
CHARACTER THEORY OF FINITE GROUPS

Chapter 1:

REPRESENTATIONS
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K is a field.
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G is a finite group and
K is a field.

A K-representation of G is a homomorphism

X : G→ GL(n,K) ,

where GL(n,K) is the group of invertible n× n
matrices over K.

The positive integer n is the degree of X .



K-representations X and Y of G, both of degree
n, are similar if there exists an invertible n × n
matrix P over K such that

Y(g) = P−1X (g)P

for all g ∈ G.
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ducible if there does NOT exist a nonzero proper
subspace U of the n-dimensional row space over
K such that UX (g) ⊆ U for all g ∈ G.
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A K-representation X of G of degree n is irre-
ducible if there does NOT exist a nonzero proper
subspace U of the n-dimensional row space over
K such that UX (g) ⊆ U for all g ∈ G.

To say that X is irreducible thus means that it
is NOT similar to a representation Y of the form

Y(g) =

[
U(g) 0
∗ V(g)

]

Note: Here, U and V are representations.
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The group algebra K[G] is the vector space over
K with basis G.

Multiplication is defined by the group product
together with the distributive law.

If X is a K-representation of G with degree n,
then X can be extended linearly to K[G].

The result is an algebra homomorphism

X : K[G]→Mn(K) ,

where Mn(K) is the algebra of n× n matrices.



Fact: Assuming that K is algebraically closed,
the K-representation X of G is irreducible iff X
maps K[G] onto the full algebra Mn(K).
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Fact: Assuming that K is algebraically closed,
the K-representation X of G is irreducible iff X
maps K[G] onto the full algebra Mn(K).

Note: The “if” direction is obvious but “only if”
requires algebraically closed.

If X is irreducible and K is algebraically closed,
it follows that the only matrices that central-
ize X (G) are the scalar matrices. This is called
Schur’s lemma.



EXERCISE (1.1): Let K be an arbitrary field,
and let z be the sum of all elements of G in
the group algebra K[G]. Show that the one-
dimensional subspace Kz of K[G] is an ideal.
Also, prove that z is nilpotent iff the character-
istic of K divides |G|.

EXERCISE (1.2): With the notation as above,
show that K[G] has a proper ideal I such that
Kz + I = K[G] iff the characteristic of K does
not divide |G|.
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From now on, we take K = C, though any alge-
braically closed characteristic zero field will work
as well.

Fact: C[G] is a direct sum of full matrix algebras:

C[G] =
k∑
i=1

Mni
(C) .

Note:

|G| = dim(C[G]) =

k∑
i=1

(ni)
2.



What is k?



What is k?

Since each matrix algebra has center of dimen-
sion 1, we have

k = dim(Z(C[G])) .



What is k?

Since each matrix algebra has center of dimen-
sion 1, we have

k = dim(Z(C[G])) .

Also, the sums in C[G] of the elements of each
conjugacy class of G form a basis for Z(C[G]),
and thus

k = number of classes of G .



Observe that the composite map
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is an irreducible C-representation of G.

Here, the second map is the projection
to the i th summand.
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Observe that the composite map

G→ C[G]→Mni
(C)

is an irreducible C-representation of G.

Here, the second map is the projection
to the i th summand.

Write Xi to denote this representation.

Fact: Every irreducible C-representation of G is
similar to one of the Xi.



Chapter 2:

CHARACTERS



Given a C-representation X of G, the associated
character χ is the function G→ C given by:

χ(g) = trace(X (g)) .

We say X affords χ.
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Given a C-representation X of G, the associated
character χ is the function G→ C given by:

χ(g) = trace(X (g)) .

We say X affords χ.

Note: Similar representations afford equal char-
acters.

Note: If X affords χ then χ(1) is the
degree of X . Thus χ(1) is a positive integer; it
is called the degree of χ.



Note:
χ(x−1gx) = trace(X (x−1gx))

= trace(X (x)−1X (g)X (x))

= trace(X (g))

= χ(g) .

so characters are constant on conjugacy classes.

The characters of G thus lie in the C-space cf(G)
of class functions of G.



Note:
χ(x−1gx) = trace(X (x−1gx))

= trace(X (x)−1X (g)X (x))

= trace(X (g))

= χ(g) .

so characters are constant on conjugacy classes.

The characters of G thus lie in the C-space cf(G)
of class functions of G.

Note: We have dim(cf(G)) = k, the number
of classes of G.



If α and β are characters of G afforded by U and
V respectively, then the representation X given
by

X (g) =

[
U(g) 0
0 V(g)

]
affords the character χ = α+ β.
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If α and β are characters of G afforded by U and
V respectively, then the representation X given
by

X (g) =

[
U(g) 0
0 V(g)

]
affords the character χ = α+ β.

Thus sums of characters are characters.

A character that is not a sum of two characters
is said to be irreducible.
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Note: Every character is a sum of irreducible
characters.

This follows since character degrees are positive
integers, and thus one cannot keep decomposing
indefinitely.

We will see that a character χ is uniquely a sum
of irreducible characters. These are called the
irreducible constituents of χ.

Notation: Irr(G) is the set of irreducible charac-
ters of G.



Recall: The C-representations Xi for 1 ≤ i ≤ k
come from the decomposition of the group alge-
bra C[G] as a direct sum of matrix rings.
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Recall: The C-representations Xi for 1 ≤ i ≤ k
come from the decomposition of the group alge-
bra C[G] as a direct sum of matrix rings.

Also recall: Up to similarity, these Xi are all of
the irreducible C-representations of G.

THEOREM: The characters afforded by the Xi
are distinct and linearly independent, and they
form the set Irr(G).



Proof: Since the Xi come from projections into
direct summands of C[G], we can find aj ∈ C[G]
such that Xi(aj) = 0 if i 6= j, but Xi(ai) is an
arbitrary matrix of the appropriate size.



Proof: Since the Xi come from projections into
direct summands of C[G], we can find aj ∈ C[G]
such that Xi(aj) = 0 if i 6= j, but Xi(ai) is an
arbitrary matrix of the appropriate size.

Let χi be the character afforded by Xi, and view
χi as being defined on the whole of C[G]. Then
we can choose the ai such that χi(aj) = 0, but
χi(ai) = 1. It follows that the χi are distinct
and linearly independent.
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C-representation affording χ. We argue that X
is irreducible.



Now let χ ∈ Irr(G) be arbitrary, and let X be a
C-representation affording χ. We argue that X
is irreducible.

Otherwise, X is similar to a representation Y
such that

Y(g) =

[
U(g) 0
∗ V(g)

]
and χ is afforded by Y.



Now let χ ∈ Irr(G) be arbitrary, and let X be a
C-representation affording χ. We argue that X
is irreducible.

Otherwise, X is similar to a representation Y
such that

Y(g) =

[
U(g) 0
∗ V(g)

]
and χ is afforded by Y.

Then χ = α+β, where U afords α and V affords
β. This contradicts the irreducibility of χ.



We now know that each character χ ∈ Irr(G)
is afforded by an irreducible representation, and
hence χ is afforded by some Xi. It follows that
χ = χi for some i.
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We now know that each character χ ∈ Irr(G)
is afforded by an irreducible representation, and
hence χ is afforded by some Xi. It follows that
χ = χi for some i.

What remains is to show that each character χj
is irreducible.

Otherwise, since χj is a sum of irreducible char-
acters, it is a sum of characters χi with i 6= j,
and this contradicts the linear independence.
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COROLLARY:
∑

χ∈Irr(G)

χ(1)2 = |G|.

COROLLARY: |Irr(G)| = k, the number of con-
jugacy classes of G.

COROLLARY: G is abelian iff every member of
Irr(G) has degree 1.

Proof: G is abelian iff k = |G|.

COROLLARY: The set Irr(G) is a basis for the
space cf(G) of class functions.
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A linear character is a character λ such that the
degree λ(1) = 1.

Note: The linear characters of G are exactly the
homomorphisms from G into the group C×.

The principal character 1G of G is the trivial
homomorphism, with constant value 1.

Note: The set of linear characters of G forms a
group under pointwise multiplication.

The identity is 1G and λ−1 = λ, the complex
conjugate of λ.



COROLLARY: The number of linear characters
of G is |G : G′|.
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COROLLARY: The number of linear characters
of G is |G : G′|.

Proof: Since a linear character of G is a homo-
morphism of G into the abelian group C×, the
derived subgroup G′ is contained in the kernel
of every such character.

The linear characters of G, therefore, are exactly
the linear characters of the abelian group G/G′,
and the number of these is |G/G′|.

Fact: The group of linear characters of G is iso-
morphic to G/G′.



EXERCISE (2.1): Compute the degrees of the
irreducible characters of S3, A4, S4 and A5.

EXERCISE (2.2) : If χ is a character of G and λ
is a linear character, define λχ to be the function
defined by (λχ)(g) = λ(g)χ(g). Show that λχ
is a character, and that it is irreducible iff χ is
irreducible.



In fact, if χ and ψ are arbitrary characters of
G then the function χψ defined by (χψ)(g) =
χ(g)ψ(g) is a character. We sketch a proof.
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Kronecker product of A and B, denoted A⊗B,
is an mn×mn matrix, defined as follows.



In fact, if χ and ψ are arbitrary characters of
G then the function χψ defined by (χψ)(g) =
χ(g)ψ(g) is a character. We sketch a proof.

Let A be an m×m matrix with entries ai,j , and
let B be an n × n matrix with entries bk,l. The
Kronecker product of A and B, denoted A⊗B,
is an mn×mn matrix, defined as follows.

The rows and columns of A⊗B are indexed by
the set of ordered pairs (u, v) with 1 ≤ u ≤ m
and 1 ≤ v ≤ n. The ((i, k), (j, l))-entry of A⊗B
is ai,jbk,l.



Note: To write A ⊗ B explicitly as a matrix,
one must define some specific order on the index
set. The choice of order is essentially irrelevant,
however.
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It is easy to compute that
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Note: To write A ⊗ B explicitly as a matrix,
one must define some specific order on the index
set. The choice of order is essentially irrelevant,
however.

It is easy to compute that

trace(A⊗B) = trace(A)trace(B) .

Also, if C and D are m × m and n × n matri-
ces, respectively, it follows from the definition of
matrix multiplication that

(A⊗B)(C ⊗D) = AC ⊗BD .



Now let X and Y be representations of G, af-
fording characters χ and ψ, respectively. Define
Z by Z(g) = X (g)⊗ Y(g).



Now let X and Y be representations of G, af-
fording characters χ and ψ, respectively. Define
Z by Z(g) = X (g)⊗ Y(g).

It follows from the above remarks that Z is a
representation, and that the character afforded
by Z is the product χψ. This shows that prod-
ucts of characters are characters.



Now let X and Y be representations of G, af-
fording characters χ and ψ, respectively. Define
Z by Z(g) = X (g)⊗ Y(g).

It follows from the above remarks that Z is a
representation, and that the character afforded
by Z is the product χψ. This shows that prod-
ucts of characters are characters.

Note: If either χ or ψ is reducible, it is easy
to see that χψ is reducible. Even if χ and ψ are
irreducible, however, their product is usually not
irreducible.



EXERCISE (2.3): Suppose χ is the unique mem-
ber of Irr(G) having degree d for some integer d.
Show that χ(x) = 0 for all elements x ∈ G−G′.

EXERCISE (2.4): Let χ be a character of G,
and let X afford χ. Define the function λ on G
by λ(g) = det(X (g)). Show that λ is a linear
character of G and that it does not depend on
the choice of the representation X affording χ.

Notation: λ = det(χ). Also, the determinantal
order o(χ) is the order of det(χ) in the group of
linear characters of G.



Chapter 3:

CHARACTER VALUES



Let X be a representation of G with degree d
and let g ∈ G have order n. Then X (g)n = I,
the d× d identity matrix.



Let X be a representation of G with degree d
and let g ∈ G have order n. Then X (g)n = I,
the d× d identity matrix.

It follows by linear algebra that the matrix X (g)
is similar to a diagonal matrix whose diagonal
entries are n th roots of unity.



If X affords the character χ, then

χ(g) = trace(X (g)) = ε1 + · · ·+ εd ,

where the εi for 1 ≤ i ≤ d are n th roots of unity.



If X affords the character χ, then

χ(g) = trace(X (g)) = ε1 + · · ·+ εd ,

where the εi for 1 ≤ i ≤ d are n th roots of unity.

Also

χ(g−1) = trace(X (g)−1) = ε1 + · · ·+ εd = χ(g) ,

where the overbar is complex conjugation.



THEOREM: Let χ be a character of a group G,
where χ is afforded by a representation X , and
let g ∈ G. Then:

(a) |χ(g)| ≤ χ(1).

(b) |χ(g)| = χ(1) iff X (g) is a scalar matrix.

(c) χ(g) = χ(1) iff X (g) is the identity matrix.



COROLLARY: Let χ be a character of G. Then
{g ∈ G | χ(g) = χ(1)} is the kernel of every
representation affording χ. In particular, this
subset is a normal subgroup of G.



COROLLARY: Let χ be a character of G. Then
{g ∈ G | χ(g) = χ(1)} is the kernel of every
representation affording χ. In particular, this
subset is a normal subgroup of G.

Notation: We write

ker(χ) = {g ∈ G | χ(g) = χ(1)} .

This normal subgroup is called the kernel of χ,
and χ is faithful if ker(χ) = 1.



EXERCISE (3.1): Let N / G and ψ ∈ Irr(G/N).
Define χ : G → C by setting χ(g) = ψ(Ng).
Show that χ ∈ Irr(G) and that N ⊆ ker(χ).
Also, show that the map ψ 7→ χ from Irr(G/N)
into Irr(G) defines a bijection from Irr(G/N) to
the set {χ ∈ Irr(G) | N ⊆ ker(χ)}.

Note: It is customary to identify ψ with χ, so
we usually pretend that

Irr(G/N) = {χ ∈ Irr(G) | N ⊆ ker(χ)} .



EXERCISE (3.2): Show that⋂
{ker(χ) | χ ∈ Irr(G)} = 1 ,

the trivial subgroup of G.

EXERCISE (3.3): Let N / G. Show that

N =
⋂
{ker(χ) | N ⊆ ker(χ)} .

Thus, knowing the irreducible characters of G
determines the set of all normal subgroups of G.



COROLLARY: Let χ be a character of G af-
forded by X . Then {g ∈ G | |χ(g)| = χ(1)}
is the preimage in G of the normal subgroup of
X (G) consisting of scalar matrices. In particu-
lar, this set is a normal subgroup of G.



COROLLARY: Let χ be a character of G af-
forded by X . Then {g ∈ G | |χ(g)| = χ(1)}
is the preimage in G of the normal subgroup of
X (G) consisting of scalar matrices. In particu-
lar, this set is a normal subgroup of G.

Notation: We write

Z(χ) = {g ∈ G | |χ(g)| = χ(1)} .

This normal subgroup is the center of χ.



EXERCISE (3.4): Let χ be a character of G.
Prove that Z(χ)/ker(χ) is a cyclic subgroup of
Z(G/ker(χ)).

EXERCISE (3.5): If χ ∈ Irr(G), show that

Z(χ)/ker(χ) = Z(G/ker(χ)) .

EXERCISE (3.6): Let P be a p-group for some
prime p. Show that P has a faithful irreducible
character if and only if Z(P ) is cyclic.



EXERCISE (3.7): Let χ ∈ Irr(G), where G is a
simple group of even order. Show that χ(1) 6= 2.

HINT: Let g ∈ G have order 2. Consider the
values of χ(g) and det(χ)(g).

EXERCISE (3.8): Let G be a simple group and
suppose χ ∈ Irr(G) has degree 3. Compute χ(g)
for an element g ∈ G of order 2.

EXERCISE (3.9): Repeat the above if χ has de-
gree 4.



EXERCISE (3.10): If H ⊆ G and χ is a charac-
ter of G, it is easy to see that the restriction of
χ to H, denoted χH , is a character of H. Show
that H ⊆ Z(χ) iff χH has the form eλ, where e
is a positive integer and λ is a linear character
of H.

EXERCISE (3.11): Let H ⊆ G and let χ be a
character of G such that the restriction χH is
irreducible. Show that CG(H) ⊆ Z(χ).



Chapter 4:

ORTHOGONALITY
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G acts by right multiplication on C[G], so each
element g ∈ G determines a linear transforma-
tion on C[G].

We get a C-representation of G by choosing a
basis for C[G].

The character afforded by this representation is
the regular character of G, denoted ρ or ρG.



To compute ρ, we can use the basis G for C[G].
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If x, y ∈ G, then the entry of R(g) at position
(x, y) is 1 if xg = y and 0 otherwise.



To compute ρ, we can use the basis G for C[G].

If R is the corresponding representation, R(g)
is an |G| × |G| matrix with rows and columns
indexed by the elements of G.

If x, y ∈ G, then the entry of R(g) at position
(x, y) is 1 if xg = y and 0 otherwise.

If g 6= 1, therefore, all diagonal entries of R(g)
are 0.



We thus have

ρ(g) =

{
0 if g 6= 1
|G| if g = 1 .



We thus have

ρ(g) =

{
0 if g 6= 1
|G| if g = 1 .

Next, we wish to express the character ρ in terms
of Irr(G).



Fact:
ρ =

∑
χ∈Irr(G)

χ(1)χ .



Fact:
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This is proved using a different basis for C[G],
one compatible with the decomposition as a di-
rect sum of matrix rings. (We omit the proof.)



Fact:
ρ =

∑
χ∈Irr(G)

χ(1)χ .

This is proved using a different basis for C[G],
one compatible with the decomposition as a di-
rect sum of matrix rings. (We omit the proof.)

As a check (but not a proof) observe that

|G| = ρ(1) =
∑

χ∈Irr(G)

χ(1)2 .
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summands correspond to members of Irr(G).
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Recall: C[G] is a direct sum of matrix rings. The
summands correspond to members of Irr(G).

For χ ∈ Irr(G), let eχ be the unit element of the
direct summand of C[G] corresponding to χ.

For χ, ψ ∈ Irr(G), we have

eχeψ =

{
eχ if χ = ψ
0 if χ 6= ψ .

The eχ are the central idempotents of C[G].

Note:
∑

χ∈Irr(G)

eχ = 1.



Let Xχ be the representation obtained by the
projection of C[G] onto the direct summand cor-
responding to χ, and note that Xχ affords χ.
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Let Xχ be the representation obtained by the
projection of C[G] onto the direct summand cor-
responding to χ, and note that Xχ affords χ.

Then Xχ(eχ) is the χ(1) × χ(1) identity matrix
and Xχ(eψ) = 0 if ψ 6= χ.

For arbitrary u ∈ C[G], we have

Xχ(ueψ) = Xχ(u)Xχ(eψ) =

{
Xχ(u) if χ = ψ
0 if χ 6= ψ .

Thus

χ(ueψ) =

{
χ(u) if χ = ψ
0 if χ 6= ψ .
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Write eχ =
∑
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agg with complex coefficients ag.

Then ag is the coefficient of 1 in g−1eχ.

We have

|G|ag = ρ(g−1eχ) =
∑

ψ∈Irr(G)

ψ(1)ψ(g−1eχ)

= χ(1)χ(g−1) .

Thus

ag =
χ(1)χ(g)

|G|
.
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χ(1)2

|G|
=
∑
g∈G

(ag−1)(ag)

=
∑
g∈G

(
χ(1)χ(g)

|G|

)(
χ(1)χ(g)

|G|

)

=
χ(1)2

|G|2
∑
g∈G

χ(g)χ(g) .



Now compare the coefficients of 1 in eχ = (eχ)2.

χ(1)2

|G|
=
∑
g∈G

(ag−1)(ag)

=
∑
g∈G

(
χ(1)χ(g)

|G|

)(
χ(1)χ(g)

|G|

)

=
χ(1)2

|G|2
∑
g∈G

χ(g)χ(g) .

Thus 1 =
1

|G|
∑
g∈G

χ(g)χ(g) =
1

|G|
∑
g∈G
|χ(g)|2.
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Now suppose χ, ψ ∈ Irr(G) are different, and
compare the coefficients of 1 in 0 = eχeψ.

Writing eχ =
∑
agg and eψ =

∑
bgg, we get

0 =
∑
g∈G

(ag−1)(bg)

=
∑
g∈G

(
χ(1)χ(g)

|G|

)(
ψ(1)ψ(g)

|G|

)
.

Thus
∑
g∈G

χ(g)ψ(g) = 0.



We now have the first orthogonality relation:

1

|G|
∑
g∈G

χ(g)ψ(g) =

{
1 if χ = ψ
0 if χ 6= ψ ,

for χ, ψ ∈ Irr(G).
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Notation: For class functions α and β on G, we
write

[α, β] =
1

|G|
∑
g∈G

α(x)β(x) .

This is an inner product on the space cf(G) of
class functions, and Irr(G) is an orthonormal ba-
sis for this space.

Note: The form [., .] is linear in the first variable
and conjugate-linear in the second.

Also [β, α] = [α, β] and [αβ, γ] = [α, βγ].
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If α is an arbitrary class function on G, we know
that α is a linear combination of Irr(G).

The coefficient of χ in this linear combination is
[α, χ], so we can write

α =
∑

χ∈Irr(G)

[α, χ]χ .

Observe that [ρ, χ] = χ(1) since ρ vanishes on
nonidentity group elements and ρ(1) = |G|.
Thus ρ =

∑
χ(1)χ, which is a fact we stated

previously, but did not prove.

Of course, this is not a proof.
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COROLLARY: Let α be a nonzero class func-
tion on G. Then α is a character iff [α, χ] is a
nonnegative integer for all χ ∈ Irr(G).

COROLLARY: Let χ be a character of G. Then
χ is irreducible iff [χ, χ] = 1.



EXERCISE (4.1): Let H ⊆ G and χ ∈ Irr(G),
and recall that χH is the character of H obtained
by restricting χ to H. Show that [χH , χH ] ≤
|G : H| with equality iff χ has the value 0 on all
elements of G−H.

EXERCISE (4.2): If G is abelian, show that
[χ, χ] ≥ χ(1) for all (not necessarily irreducible)
characters χ of G.

EXERCISE (4.3): Let H ⊆ G, with H abelian,
and let χ ∈ Irr(G). Show that χ(1) ≤ |G : H|.



EXERCISE (4.4): Let χ ∈ Irr(G), where G is a
nontrivial group. Show that there is a noniden-
tity element g ∈ G such that χ(g) 6= 0.

EXERCISE (4.5): Let H < G with H is abelian.
If χ ∈ Irr(G) with |G : H| = χ(1), show that H
contains a nonidentity normal subgroup of G.

EXERCISE (4.6): Let G act on a set Ω. Let
π be the corresponding permutation character,
so π(g) = |{t ∈ Ω | t.g = t}|. Show that π is a
character of G and [π, 1G] is the number of orbits
of G on Ω.



EXERCISE (4.7): Let G = A5, the alternating
group, and let π be the permutation character
of the natural action of G on five points. Show
that χ = π− 1G is an irreducible character of G
having degree 4.

EXERCISE (4.8): Again let G = A5 and observe
that G acts by conjugation on the set of six Sy-
low 5-subgroups of G. Let σ be the permutation
character of this action. Show that ψ = σ − 1G
is an irreducible character of G having degree 5.



It is customary to display the irreducible char-
acters of a group G in a character table.



It is customary to display the irreducible char-
acters of a group G in a character table.

This is a square array of complex numbers with
rows indexed by Irr(G) and columns indexed by
the set of classes of G. The entry in a given row
and column is the common value of the given
character on the elements of the given class.



Usually, the first column of the character table
corresponds to the class of the identity in G, and
thus we see the irreducible character degrees of
G by reading down this column.



Usually, the first column of the character table
corresponds to the class of the identity in G, and
thus we see the irreducible character degrees of
G by reading down this column.

It is also customary for the first row of the char-
acter table to correspond to the principal char-
acter 1G, and thus the first row consists of 1s.



Usually, the first column of the character table
corresponds to the class of the identity in G, and
thus we see the irreducible character degrees of
G by reading down this column.

It is also customary for the first row of the char-
acter table to correspond to the principal char-
acter 1G, and thus the first row consists of 1s.

EXERCISE (4.9): Show that knowing the char-
acter table of G determines whether or not G is
solvable or G is nilpotent.
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representative of the j th conjugacy class of G.
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We introduce some temporary notation now.

Write Irr(G) = {χ1, χ2, . . . , χk} and let gj be a
representative of the j th conjugacy class of G.

The character table of G is thus the matrix X
with (i, j)-entry equal to χi(gj).

Write dt to denote the size of the t th conjugacy
class of G. Then by the first orthogonality rela-
tion, we have:
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δi,j = [χi, χj ] =
1

|G|

k∑
t=1

χi(gt)dtχj(gt) .

We can rewrite this in matrix notation:

I =
1

|G|
XDXt ,

where D = diag(d1, d2, . . . , dk).

Then

I =
1

|G|
XtXD .



We have
|G|I = XtXD

so

|G|δi,j =
k∑
t=1

χt(gi)χt(gj)dj .



We have
|G|I = XtXD

so

|G|δi,j =
k∑
t=1

χt(gi)χt(gj)dj .

Now |G|/dj = |CG(gj)|, and thus for x, y ∈ G,
we have∑

χ∈Irr(G)

χ(x)χ(y) =

{
|CG(x)| if x ∼ y
0 otherwise,

where x ∼ y means that x and y are conjugate.



This is the second orthogonality relation, also
called “column orthogonality”. Since it is a con-
sequence of the first orthogonality relation, or
“row orthogonality”, it gives no additional in-
formation about the characters of G. It is, how-
ever, useful, especially when constructing char-
acter tables.
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A consequence is that no two columns of the
character table can be identical.



This is the second orthogonality relation, also
called “column orthogonality”. Since it is a con-
sequence of the first orthogonality relation, or
“row orthogonality”, it gives no additional in-
formation about the characters of G. It is, how-
ever, useful, especially when constructing char-
acter tables.

A consequence is that no two columns of the
character table can be identical.

If x, y ∈ G are not conjugate, therefore, there
exists χ ∈ Irr(G) such that χ(x) 6= χ(y).



Chapter 5:

INTEGRALITY



An algebraic integer is a complex number that
is a root of a monic polynomial in Z[x].
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√
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An algebraic integer is a complex number that
is a root of a monic polynomial in Z[x].

Examples: Elements of Z, roots of unity and
things like n

√
m where m,n ∈ Z.

Fact: The algebraic integers are a subring of C.

COROLLARY: Character values are algebraic
integers.
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Fact: Rational algebraic integers are in Z.

Fact: Suppose ui ∈ C for 1 ≤ i ≤ n, and let R
be the set of Z-linear combinations if the ui. If
R is closed under multiplication, then all ui are
algebraic integers.
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Now let χ ∈ Irr(G) and let X afford χ.

Let z ∈ Z(C[G]) so X (z) commutes with all ma-
trices in X (C[G]). Since this is a full matrix ring,
we see that X (z) is a scalar matrix.

Thus X (z) = ωI for some complex number ω,
and we have

χ(z) = trace(X (z)) = trace(ωI) = ωχ(1) .

It follows that ω depends on χ but not on X ,
and we write ωχ for ω.
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We have ωχ(z) = χ(z)/χ(1).

Also X (z) = ωχ(z)I, and it follows that ωχ is an
algebra homomorphism Z(C[G])→ C.

The function ωχ is sometimes referred to as a
central character.

Recall that the conjugacy class sums in C[G]
form a basis for Z(C[G]) so the central characters
are determined by their values on class sums.
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Let K be a class of G and write K̂ to denote the
sum of the elements of K, so K̂ ∈ Z(C[G]).

We have χ(K̂) = |K|χ(g), where g ∈ K.

Then

ωχ(K̂) =
χ(K̂)

χ(1)
=
|K|χ(g)

χ(1)
.



Now suppose K and L are classes of G. Then
K̂L̂ is a linear combination of class sums, so we
can write

K̂L̂ =
∑
M

aK,L,MM̂ ,

where M runs over the classes of G.



Now suppose K and L are classes of G. Then
K̂L̂ is a linear combination of class sums, so we
can write

K̂L̂ =
∑
M

aK,L,MM̂ ,

where M runs over the classes of G.

The coefficient of each group element on the left
of the above equation is a nonnegative integer, so
the coefficients aK,L,M must also be nonnegative
integers.
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We have

ωχ(K̂)ωχ(L̂) =
∑

aK,L,Mωχ(M̂) .

As K runs over the classes of G, we see that
the set of Z-linear combinations of the complex
numbers ωχ(K̂) is closed under multiplication.

These numbers, therefore, are algebraic integers.

THEOREM: Let g ∈ G and χ ∈ Irr(G), and let

K be the class of g inG. Then ωχ(K̂) =
|K|χ(g)

χ(1)
is an algebraic integer.



THEOREM: χ(1) divides |G| for all χ ∈ Irr(G).



THEOREM: χ(1) divides |G| for all χ ∈ Irr(G).

Proof: For each class K of G, let gK be an ele-
ment of K. By the first orthogonality relation

|G| =
∑
g∈G

χ(g)χ(g) =
∑
K

|K|χ(gK)χ(gK) ,

where the second sum runs over the classes of G.
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integer, and hence lies in Z.

Note: A related argument can be used to prove
the following stronger result.



Since |K|χ(gK) = ωχ(K̂)χ(1), we have

|G| = χ(1)
∑
K

ωχ(K̂)χ(xK) .

so the rational number |G|/χ(1) is an algebraic
integer, and hence lies in Z.

Note: A related argument can be used to prove
the following stronger result.

Fact: Let χ ∈ Irr(G). Then |G : Z(G)| is divisi-
ble by χ(1).



EXERCISE (5.1): Let G be a p-group, where
G′ = Z(G) has order p. Prove the following.

(a) Each noncentral class of G has size p.

(b) G has exactly p − 1 nonlinear irreducible
characters.

(c) The average of χ(1)2 for nonlinear
χ ∈ Irr(G) is |G|/p.

(d) χ(1)2 ≤ |G|/p for all χ ∈ Irr(G), and thus
χ(1)2 = |G|/p for nonlinear χ ∈ Irr(G).

Note: Groups of this type are extraspecial.



We begin work now toward a proof of Burnside’s
famous paqb-theorem.



We begin work now toward a proof of Burnside’s
famous paqb-theorem.

LEMMA: Let χ be a character of G, where |G| =
n, and let g ∈ G. Suppose |χ(g)| < χ(1). Let
Γ = Gal(Qn/Q), where Qn is the n th cyclotomic
field. Then |χ(g)σ| < χ(1) for all σ ∈ Γ.



We begin work now toward a proof of Burnside’s
famous paqb-theorem.

LEMMA: Let χ be a character of G, where |G| =
n, and let g ∈ G. Suppose |χ(g)| < χ(1). Let
Γ = Gal(Qn/Q), where Qn is the n th cyclotomic
field. Then |χ(g)σ| < χ(1) for all σ ∈ Γ.

Proof: We know that χ(g) is a sum of χ(1) roots
of unity in Qn. These are not all equal since
|χ(g)| < χ(1). It follows that χ(g)σ is also a
sum of χ(1) roots of unity that are not all equal.
The result follows.
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G, and assume that χ(1) is relatively prime to
the size of the class K containing g. Then either
χ(g) = 0 or g ∈ Z(χ).
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Proof: Write aχ(1) + b|K| = 1 for integers a, b.

Now ω = χ(g)|K|/χ(1) is an algebraic integer.



THEOREM (Burnside): Let χ ∈ Irr(G) and g ∈
G, and assume that χ(1) is relatively prime to
the size of the class K containing g. Then either
χ(g) = 0 or g ∈ Z(χ).

Proof: Write aχ(1) + b|K| = 1 for integers a, b.

Now ω = χ(g)|K|/χ(1) is an algebraic integer.

Then
χ(g)

χ(1)
=
χ(g)

χ(1)

(
aχ(1) + b|K|

)
= aχ(g) + bω

is an algebraic integer.



Let Γ = Gal(Qn/Q), where n = |G|, and let

z =
∏
σ∈Γ

(
χ(g)

χ(1)

)σ
,

so z is an algebraic integer in Q. Then z ∈ Z.



Let Γ = Gal(Qn/Q), where n = |G|, and let

z =
∏
σ∈Γ

(
χ(g)

χ(1)

)σ
,

so z is an algebraic integer in Q. Then z ∈ Z.

Assume now that g 6∈ Z(χ). Then |χ(g)| < χ(1),
so by the lemma, |χ(g)σ| < χ(1) for all σ ∈ Γ.



Let Γ = Gal(Qn/Q), where n = |G|, and let

z =
∏
σ∈Γ

(
χ(g)

χ(1)

)σ
,

so z is an algebraic integer in Q. Then z ∈ Z.

Assume now that g 6∈ Z(χ). Then |χ(g)| < χ(1),
so by the lemma, |χ(g)σ| < χ(1) for all σ ∈ Γ.

Each factor of z has absolute value less than 1,
so |z| < 1. Since z ∈ Z, we have z = 0. Then
χ(g)σ = 0 for some σ, so χ(g) = 0.



THEOREM (Burnside): Let G be nonabelian
and simple. Then no nontrivial conjugacy class
of G has prime power size.
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where K is a nontrivial class, and let g ∈ K,
so g 6= 1.
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THEOREM (Burnside): Let G be nonabelian
and simple. Then no nontrivial conjugacy class
of G has prime power size.

Proof: Suppose |K| is a power of a prime p,
where K is a nontrivial class, and let g ∈ K,
so g 6= 1.

If χ ∈ Irr(G), then Z(χ) / G. If Z(χ) = G, then
χ is linear. But G′ = G, so χ is principal.

Thus if χ ∈ Irr(G) is nonprincipal, Z(χ) = 1.



By the previous theorem, χ(g) = 0 for all non-
principal χ where p does not divide χ(1).



By the previous theorem, χ(g) = 0 for all non-
principal χ where p does not divide χ(1).

We have

0 = ρ(g) =
∑

χ∈Irr(G)

χ(1)χ(g)

Separate χ = 1G and sum only over χ for which
p divides χ(1).



By the previous theorem, χ(g) = 0 for all non-
principal χ where p does not divide χ(1).

We have

0 = ρ(g) =
∑

χ∈Irr(G)

χ(1)χ(g)

Separate χ = 1G and sum only over χ for which
p divides χ(1).

This yields 0 = 1 + pα, where α is an algebraic
integer. Since α = −1/p ∈ Q, this is a contra-
diction.



THEOREM (Burnside): If |G| has at most two
prime divisors, then G is solvable.



THEOREM (Burnside): If |G| has at most two
prime divisors, then G is solvable.

Proof: Let G be a minimal counterexample, so
G is nonabelian. If N / G with 1 < N < G, then
N and G/N are solvable, so G is solvable, which
is a contradiction. Thus G is simple.



THEOREM (Burnside): If |G| has at most two
prime divisors, then G is solvable.

Proof: Let G be a minimal counterexample, so
G is nonabelian. If N / G with 1 < N < G, then
N and G/N are solvable, so G is solvable, which
is a contradiction. Thus G is simple.

Let P > 1 be a Sylow subgroup of G. Choose
z ∈ Z(P ) with z 6= 1. Let K be the class of
z in G, so |K| = |G : CG(z)|, and this divides
|G : P |, which is a prime power, by hypothesis.
This contradicts the previous theorem.



EXERCISE (5.2): Suppose that no prime other
than p or q divides the degree of any member
of Irr(G). Show that G cannot be a nonabelian
simple group.



Chapter 6:

INDUCED CHARACTERS



Let H ⊆ G. If χ is a character of G then the
restriction χH is a character of H. In this chap-
ter, we start with a character of H and produce
a character of G.



Let H ⊆ G. If χ is a character of G then the
restriction χH is a character of H. In this chap-
ter, we start with a character of H and produce
a character of G.

More generally, start with a class function α of
H. We describe how to build the induced class
function αG of G.



Let H ⊆ G. If χ is a character of G then the
restriction χH is a character of H. In this chap-
ter, we start with a character of H and produce
a character of G.

More generally, start with a class function α of
H. We describe how to build the induced class
function αG of G.

For g ∈ G, we first define

α0(g) =

{
0 if g 6∈ H
α(g) if g ∈ H .



To convert α0 into a class-function on G we want
to sum over all conjugates of g that happen to
lie in H.

]



To convert α0 into a class-function on G we want
to sum over all conjugates of g that happen to
lie in H.

For g ∈ G, we define

αG(g) =
1

|H|
∑
x∈G

α0(xgx−1) .

Of course, the “normalization factor” 1/|H| is
not needed to make this a class function, but it
is convenient for other reasons.



Note: If g is not conjugate to any element of H,
then αG(g) = 0.



Note: If g is not conjugate to any element of H,
then αG(g) = 0.

Note: If H = G, then

αG(g) =
1

|G|
∑
x∈G

α(xgx−1) = α(g) ,

so αG = α in this case.



Note: If g is not conjugate to any element of H,
then αG(g) = 0.

Note: If H = G, then

αG(g) =
1

|G|
∑
x∈G

α(xgx−1) = α(g) ,

so αG = α in this case.

Note: We have

αG(1) =
1

|H|
∑
x∈G

α0(1) = |G : H|α(1) .



Note: Let α be the principal character of the
trivial subgroup of G. Then by the previous
notes, αG has the value 0 on nonidentity ele-
ments of G and αG(1) = |G|. Thus, αG = ρ,



Note: Let α be the principal character of the
trivial subgroup of G. Then by the previous
notes, αG has the value 0 on nonidentity ele-
ments of G and αG(1) = |G|. Thus, αG = ρ,

Note: An alternative formula for αG is

αG(g) =
∑
t∈T

α0(tgt−1) ,

where T is a set of representatives for the right
cosets of H in G.



Note: Let α be the principal character of the
trivial subgroup of G. Then by the previous
notes, αG has the value 0 on nonidentity ele-
ments of G and αG(1) = |G|. Thus, αG = ρ,

Note: An alternative formula for αG is

αG(g) =
∑
t∈T

α0(tgt−1) ,

where T is a set of representatives for the right
cosets of H in G.

This works because α0((ht)g(ht)−1) = α0(tgt−1)
for h ∈ H.



EXERCISE (6.1): Suppose G = HK, where H
and K are subgroups, and let D = H ∩K. If α
is a class function on H. Show that

(αG)K = (αD)K .

EXERCISE (6.2): Let H ⊆ G. Let α be a class
function on H and let β be a class function on
G. Show that

(βHα)G = βαG .

EXERCISE (6.3): Let H ⊆ K ⊆ G and let α be
a class function on H. Show that

(αK)G = αG .

.



THEOREM (Frobenius reciprocity). Let H ⊆
G. Let α be a class function on H and let β be
a class function on G. Then

[αG, β] = [α, βH ] .



Proof:

[αG, β] =
1

|G|
∑
g∈G

αG(g)β(g)

=
1

|G|
1

|H|
∑
g∈G

∑
x∈G

α0(xgx−1)β(g) .



Proof:

[αG, β] =
1

|G|
∑
g∈G

αG(g)β(g)

=
1

|G|
1

|H|
∑
g∈G

∑
x∈G

α0(xgx−1)β(g) .

Change variables: h = xgx−1, so g = x−1hx.

[αG, β] =
1

|G|
1

|H|
∑
x∈G

∑
h∈H

α(h)β(x−1hx)

=
1

|H|
∑
h∈H

α(h)β(h) = [α, βH ] .



COROLLARY: Let H ⊆ G and let ψ be a char-
acter of H. Then ψG is a character of G.



COROLLARY: Let H ⊆ G and let ψ be a char-
acter of H. Then ψG is a character of G.

Proof: Since ψG s a nonzero class function of G,
it suffices to show that [ψG, χ] is a nonnegative
integer for all χ ∈ Irr(G).



COROLLARY: Let H ⊆ G and let ψ be a char-
acter of H. Then ψG is a character of G.

Proof: Since ψG s a nonzero class function of G,
it suffices to show that [ψG, χ] is a nonnegative
integer for all χ ∈ Irr(G).

We have [ψG, χ] = [ψ, χH ], and since this is the
inner product of two characters of H, it is a non-
negative integer.



Note: Let ψ ∈ Irr(H) and χ ∈ Irr(G), where
H ⊆ G. Then ψ is a constituent of χH iff χ is a
constituent of ψG.



Note: Let ψ ∈ Irr(H) and χ ∈ Irr(G), where
H ⊆ G. Then ψ is a constituent of χH iff χ is a
constituent of ψG.

In this situation, we say that χ lies over ψ and
that ψ lies under χ.



Note: Let ψ ∈ Irr(H) and χ ∈ Irr(G), where
H ⊆ G. Then ψ is a constituent of χH iff χ is a
constituent of ψG.

In this situation, we say that χ lies over ψ and
that ψ lies under χ.

Notation: Let H ⊆ G and ψ ∈ Irr(H). We
write Irr(G|ψ) to denote the set of irreducible
characters of G that lie over ψ.



Note: Let ψ ∈ Irr(H) and χ ∈ Irr(G), where
H ⊆ G. Then ψ is a constituent of χH iff χ is a
constituent of ψG.

In this situation, we say that χ lies over ψ and
that ψ lies under χ.

Notation: Let H ⊆ G and ψ ∈ Irr(H). We
write Irr(G|ψ) to denote the set of irreducible
characters of G that lie over ψ.

Equivalently, Irr(G|ψ) is the set of irreducible
constituents of ψG.



EXERCISE(6.4): Suppose that every nonlinear
irreducible character of G has degree at least n.
Show that if H ⊆ G and |G : H| ≤ n, then
G′ ⊆ H, and thus H / G.

HINT: Consider the character (1H)G, where 1H
is the principal character of H.



THEOREM (Frobenius): Let H ⊆ G, and as-
sume H ∩ Hx = 1 for all x ∈ G − H. Then
N = (G−

⋃
x∈G

Hx) ∪ {1} is a subgroup of G.



THEOREM (Frobenius): Let H ⊆ G, and as-
sume H ∩ Hx = 1 for all x ∈ G − H. Then
N = (G−

⋃
x∈G

Hx) ∪ {1} is a subgroup of G.

Note: N is obviously normal.



THEOREM (Frobenius): Let H ⊆ G, and as-
sume H ∩ Hx = 1 for all x ∈ G − H. Then
N = (G−

⋃
x∈G

Hx) ∪ {1} is a subgroup of G.

Note: N is obviously normal.

Note: Since H = NG(H), the number of distinct
conjugates of H is |G : H|, and thus

|N | = |G| − |G : H|(|H| − 1) = |G : H| .



THEOREM (Frobenius): Let H ⊆ G, and as-
sume H ∩ Hx = 1 for all x ∈ G − H. Then
N = (G−

⋃
x∈G

Hx) ∪ {1} is a subgroup of G.

Note: N is obviously normal.

Note: Since H = NG(H), the number of distinct
conjugates of H is |G : H|, and thus

|N | = |G| − |G : H|(|H| − 1) = |G : H| .
Note: N ∩H = 1, so assuming that N is a sub-
group, we have |NH| = |N ||H| = |G|, and thus
NH = G.



IfH is as in the statement of Frobenius’ theorem,
and 1 < H < G, we say that G is a Frobenius
group. Also, H is a Frobenius complement in G
and the subgroup N is a Frobenius kernel.



IfH is as in the statement of Frobenius’ theorem,
and 1 < H < G, we say that G is a Frobenius
group. Also, H is a Frobenius complement in G
and the subgroup N is a Frobenius kernel.

Proof of Frobenius’ theorem: Let ψ ∈ Irr(H)
with ψ 6= 1H , and let α = ψ − ψ(1)1H , so α
is a class function on H and α(1) = 0. Then
αG(1) = 0.



IfH is as in the statement of Frobenius’ theorem,
and 1 < H < G, we say that G is a Frobenius
group. Also, H is a Frobenius complement in G
and the subgroup N is a Frobenius kernel.

Proof of Frobenius’ theorem: Let ψ ∈ Irr(H)
with ψ 6= 1H , and let α = ψ − ψ(1)1H , so α
is a class function on H and α(1) = 0. Then
αG(1) = 0.

Let h ∈ H with h 6= 1. Then x−1hx lies in H iff
h ∈ Hx, and since H ∩Hx = 1 if x is not in H,
this happens iff x ∈ H.



We have

αG(h) =
1

|H|
∑
x∈G

α0(xhx−1)

=
1

|H|
∑
x∈H

α(h) = α(h) ,

and thus (αG)H = α.



We have

αG(h) =
1

|H|
∑
x∈G

α0(xhx−1)

=
1

|H|
∑
x∈H

α(h) = α(h) ,

and thus (αG)H = α.

Recall that α = ψ − ψ(1)1H , where ψ ∈ Irr(H).



We have

αG(h) =
1

|H|
∑
x∈G

α0(xhx−1)

=
1

|H|
∑
x∈H

α(h) = α(h) ,

and thus (αG)H = α.

Recall that α = ψ − ψ(1)1H , where ψ ∈ Irr(H).

Then [αG, αG] = [(αG)H , α] = [α, α] = 1+ψ(1)2.



We have [αG, 1G] = [α, 1H ] = −ψ(1), so we can
write αG = Ξ − ψ(1)1G, where Ξ is a Z-linear
combination of nonprincipal irreducible charac-
ters of G.



We have [αG, 1G] = [α, 1H ] = −ψ(1), so we can
write αG = Ξ − ψ(1)1G, where Ξ is a Z-linear
combination of nonprincipal irreducible charac-
ters of G.

Now

1 + ψ(1)2 = [αG, αG] = [Ξ,Ξ] + ψ(1)2 .



We have [αG, 1G] = [α, 1H ] = −ψ(1), so we can
write αG = Ξ − ψ(1)1G, where Ξ is a Z-linear
combination of nonprincipal irreducible charac-
ters of G.

Now

1 + ψ(1)2 = [αG, αG] = [Ξ,Ξ] + ψ(1)2 .

Then [Ξ,Ξ] = 1, so Ξ is plus-or-minus an irre-
ducible character.



We have [αG, 1G] = [α, 1H ] = −ψ(1), so we can
write αG = Ξ − ψ(1)1G, where Ξ is a Z-linear
combination of nonprincipal irreducible charac-
ters of G.

Now

1 + ψ(1)2 = [αG, αG] = [Ξ,Ξ] + ψ(1)2 .

Then [Ξ,Ξ] = 1, so Ξ is plus-or-minus an irre-
ducible character.

Also,
ψ − ψ(1)1H = α = (αG)H = ΞH − ψ(1)1H ,

so ΞH = ψ, and hence Ξ ∈ Irr(G).



We now know that for each nonprincipal charac-
ter ψ ∈ Irr(H), there is a character Ξψ ∈ Irr(G)
such that (Ξψ)H = ψ.



We now know that for each nonprincipal charac-
ter ψ ∈ Irr(H), there is a character Ξψ ∈ Irr(G)
such that (Ξψ)H = ψ.

Let M =
⋂
ψ

ker(Ξψ). We argue that M = N .



We now know that for each nonprincipal charac-
ter ψ ∈ Irr(H), there is a character Ξψ ∈ Irr(G)
such that (Ξψ)H = ψ.

Let M =
⋂
ψ

ker(Ξψ). We argue that M = N .

If h ∈M ∩H, then ψ(h) = Ξ(h) = Ξ(1) = ψ(1),
so h ∈

⋂
{ker(ψ) | ψ ∈ Irr(H)} = 1.



We now know that for each nonprincipal charac-
ter ψ ∈ Irr(H), there is a character Ξψ ∈ Irr(G)
such that (Ξψ)H = ψ.

Let M =
⋂
ψ

ker(Ξψ). We argue that M = N .

If h ∈M ∩H, then ψ(h) = Ξ(h) = Ξ(1) = ψ(1),
so h ∈

⋂
{ker(ψ) | ψ ∈ Irr(H)} = 1.

Thus M ∩H = 1, and hence M ∩Hx = 1 for all
x ∈ G, and we have M ⊆ N .



We must now show that N ⊆ M , so let 1 6=
n ∈ N . Then n lies in no conjugate of H so
αG(n) = 0, where α is as before (depending on
a nonprincipal character ψ ∈ Irr(H).



We must now show that N ⊆ M , so let 1 6=
n ∈ N . Then n lies in no conjugate of H so
αG(n) = 0, where α is as before (depending on
a nonprincipal character ψ ∈ Irr(H).
Now

0 = αG(n) = Ξψ(n)− ψ(1) = Ξψ(n)− Ξψ(1) ,

and thus n ∈ ker(Ξψ) for all ψ. Then n ∈M , as
required.



Alternative statement of Frobenius’ theorem:

THEOREM: Let G be a transitive permutation
group on a set Ω, and assume that no nonidentity
element of G fixes more than one point of Ω.
Then the identity together with the elements of
G that fix no point form a subgroup N of G.



Alternative statement of Frobenius’ theorem:

THEOREM: Let G be a transitive permutation
group on a set Ω, and assume that no nonidentity
element of G fixes more than one point of Ω.
Then the identity together with the elements of
G that fix no point form a subgroup N of G.

Note: The subgroup N is normal. Also, it is
regular, which means that it is transitive and
the stabilizer of a point is trivial.



EXERCISE (6.5): Let G = NH, where N / G
and N ∩ H = 1, and assume that 1 < N < G,
Show that H is a Frobenius complement in G iff
CN (h) = 1 for all elements h ∈ H with h 6= 1.
Show also that in this case, N is the Frobenius
kernel.

EXERCISE (6.6): If H is a Frobenius comple-
ment in G and |H| is even, show that the Frobe-
nius kernel is abelian.



Chapter 7:

NORMAL SUBGROUPS



If σ : G → H is an isomorphism of groups, it
should be clear that σ carries characters of G to
characters of H, and it carries irreducible char-
acters to irreducible characters.



If σ : G → H is an isomorphism of groups, it
should be clear that σ carries characters of G to
characters of H, and it carries irreducible char-
acters to irreducible characters.

If χ is a character of G, we write χσ to denote
the corresponding character of H, where χσ is
defined by the formula

χσ(gσ) = χ(g) .



If σ : G → H is an isomorphism of groups, it
should be clear that σ carries characters of G to
characters of H, and it carries irreducible char-
acters to irreducible characters.

If χ is a character of G, we write χσ to denote
the corresponding character of H, where χσ is
defined by the formula

χσ(gσ) = χ(g) .

This also works if H = G, so σ ∈ Aut(G) per-
mutes the members of Irr(G).



Let N / G. If g ∈ G, then g induces an automor-
phism of N , so G acts on the set Irr(N), and we
have

θg(ng) = θ(n)

for g ∈ G and n ∈ N .



Let N / G. If g ∈ G, then g induces an automor-
phism of N , so G acts on the set Irr(N), and we
have

θg(ng) = θ(n)

for g ∈ G and n ∈ N .

Equivalently,

θg(n) = θ(gng−1) .



Let N / G. If g ∈ G, then g induces an automor-
phism of N , so G acts on the set Irr(N), and we
have

θg(ng) = θ(n)

for g ∈ G and n ∈ N .

Equivalently,

θg(n) = θ(gng−1) .

We say that the characters θg ∈ Irr(N) are the
conjugates of θ in G.



THEOREM (Clifford): Let χ ∈ Irr(G), and sup-
pose N / G. Then the irreducible constituents
of χN form a G-orbit in Irr(N). Also, the multi-
plicities of each of these constituents in χN are
equal.



THEOREM (Clifford): Let χ ∈ Irr(G), and sup-
pose N / G. Then the irreducible constituents
of χN form a G-orbit in Irr(N). Also, the multi-
plicities of each of these constituents in χN are
equal.

In other words,

χN = e
t∑
i=1

θi ,

where the θi are the distinct conjugates of θ in
G and e and t are positive integers.



Proof: Let θ be any irreducible constituent of
χN . If n ∈ N , then for all x ∈ G, we have
xnx−1 ∈ N . Thus



Proof: Let θ be any irreducible constituent of
χN . If n ∈ N , then for all x ∈ G, we have
xnx−1 ∈ N . Thus

θG(n) =
1

|N |
∑
x∈G

θ(xnx−1) =
1

|N |
∑
x∈G

θx(n) ,

so

(θG)N =
1

|N |
∑
x∈G

θx .



Proof: Let θ be any irreducible constituent of
χN . If n ∈ N , then for all x ∈ G, we have
xnx−1 ∈ N . Thus

θG(n) =
1

|N |
∑
x∈G

θ(xnx−1) =
1

|N |
∑
x∈G

θx(n) ,

so

(θG)N =
1

|N |
∑
x∈G

θx .

Since χ is a constituent of θG, it follows that χN
is a sum of characters of the form θx for x ∈ G.



Since χ is a class function, we have χg = χ for
g ∈ G, so χN is invariant under the G-action.



Since χ is a class function, we have χg = χ for
g ∈ G, so χN is invariant under the G-action.

We know that χN is a sum of some members of
the G-orbit of θ, and it follows that all members
of the orbit occur with equal multiplicities.



Since χ is a class function, we have χg = χ for
g ∈ G, so χN is invariant under the G-action.

We know that χN is a sum of some members of
the G-orbit of θ, and it follows that all members
of the orbit occur with equal multiplicities.

Note: The common multiplicity, usually denoted
e, is often called the ramification.



Since χ is a class function, we have χg = χ for
g ∈ G, so χN is invariant under the G-action.

We know that χN is a sum of some members of
the G-orbit of θ, and it follows that all members
of the orbit occur with equal multiplicities.

Note: The common multiplicity, usually denoted
e, is often called the ramification.

COROLLARY: Let χ ∈ Irr(G), and let θ be
an irreducible constituent of χN , where N / G.
Then χ(1) = etθ(1), so θ(1) divides χ(1).



Notation: cd(G) = {χ(1) | χ ∈ Irr(G)}.



Notation: cd(G) = {χ(1) | χ ∈ Irr(G)}.

EXERCISE (7.1): Suppose all members of cd(G)
are powers of the prime p.

(a) If G is nonabelian, show that |G : G′| is
divisible by p.

(b) Show that G has an abelian normal sub-
group A, where |G : A| is a power of p and p
does not divide |A|.
Note: The converse is also true. If A exists as in
(b) then cd(G) consists of powers of p. We need
a little more theory to prove this, however.



Let θ ∈ Irr(N), where N / G, and let T = Gθ be
the stabilizer of θ in the action of G on Irr(N).



Let θ ∈ Irr(N), where N / G, and let T = Gθ be
the stabilizer of θ in the action of G on Irr(N).

Note that N ⊆ T . The subgroup T is sometimes
called the inertia group of θ, and we sometimes
write T = IG(θ).



Let θ ∈ Irr(N), where N / G, and let T = Gθ be
the stabilizer of θ in the action of G on Irr(N).

Note that N ⊆ T . The subgroup T is sometimes
called the inertia group of θ, and we sometimes
write T = IG(θ).

Recall that in Clifford’s theorem, we had

χN = e
t∑
i=1

θi .

where t is the size of the G-orbit of θ = θ1. We
thus have t = |G : T |, where T = Gθ. In partic-
ular, t divides |G : N |.



It is also true that e divides |G : N |. We will
prove this in the case where G/N is solvable.



It is also true that e divides |G : N |. We will
prove this in the case where G/N is solvable.

THEOREM: Let N / G, where |G : N | = p, a
prime. Then either χN is a sum of p distinct
irreducible characters or χN is irreducible.



It is also true that e divides |G : N |. We will
prove this in the case where G/N is solvable.

THEOREM: Let N / G, where |G : N | = p, a
prime. Then either χN is a sum of p distinct
irreducible characters or χN is irreducible.

In the notation of Clifford’s theorem, therefore,
if |G : N | = p is prime, then e = 1 and t ∈ {1, p}.



It is also true that e divides |G : N |. We will
prove this in the case where G/N is solvable.

THEOREM: Let N / G, where |G : N | = p, a
prime. Then either χN is a sum of p distinct
irreducible characters or χN is irreducible.

In the notation of Clifford’s theorem, therefore,
if |G : N | = p is prime, then e = 1 and t ∈ {1, p}.

Proof: In general, t divides |G : N |, so t ∈ {1, p}.
Suppose first that t = p.



Let θ be an irreducible constituent of χN , so
[χN , θ] = e, where e is the ramification.



Let θ be an irreducible constituent of χN , so
[χN , θ] = e, where e is the ramification.

We have [χ, θG] = [χN , θ] = e, so χ is a con-
stituent of θG with multiplicity e.



Let θ be an irreducible constituent of χN , so
[χN , θ] = e, where e is the ramification.

We have [χ, θG] = [χN , θ] = e, so χ is a con-
stituent of θG with multiplicity e.

Since |G : N | = p = t, this yields

eχ(1) ≤ θG(1) = |G : N |θ(1) = tθ(1) ≤ χ(1) ,

so e = 1, as required.



Let θ be an irreducible constituent of χN , so
[χN , θ] = e, where e is the ramification.

We have [χ, θG] = [χN , θ] = e, so χ is a con-
stituent of θG with multiplicity e.

Since |G : N | = p = t, this yields

eχ(1) ≤ θG(1) = |G : N |θ(1) = tθ(1) ≤ χ(1) ,

so e = 1, as required.

Now assume t = 1, so χN = eθ.



Let Λ be the group of linear characters of G/N ,
so |Λ| = |G : N | = p.



Let Λ be the group of linear characters of G/N ,
so |Λ| = |G : N | = p.

Multiplication defines an action of the group Λ
on Irr(G), and each orbit has size 1 or p.



Let Λ be the group of linear characters of G/N ,
so |Λ| = |G : N | = p.

Multiplication defines an action of the group Λ
on Irr(G), and each orbit has size 1 or p.

If λ ∈ Λ, then

(χλ)N = χNλN = χN = eθ ,

so by Frobenius reciprocity, χλ is an irreducible
constituent of θG.



If the Λ-orbit of χ has size p, then θG has at least
p different irreducible constituents with degree
χ(1), and thus



If the Λ-orbit of χ has size p, then θG has at least
p different irreducible constituents with degree
χ(1), and thus

pθ(1) = θG(1) ≥ pχ(1) = peθ(1)

so e = 1, as wanted.



If the Λ-orbit of χ has size p, then θG has at least
p different irreducible constituents with degree
χ(1), and thus

pθ(1) = θG(1) ≥ pχ(1) = peθ(1)

so e = 1, as wanted.

To complete the proof, we assume that the Λ-
orbit of χ has size 1, and we derive a contradic-
tion.



Let λ ∈ Λ be nonprincipal. Since χ = χλ and
λ(x) 6= 1 for all x ∈ G − N , we have χ(x) = 0
for all such x.



Let λ ∈ Λ be nonprincipal. Since χ = χλ and
λ(x) 6= 1 for all x ∈ G − N , we have χ(x) = 0
for all such x.

We have

e2 = [eθ, eθ] = [χN , χN ] = |G : N | = p ,

where the penultimate equality holds by Exer-
cise 4.1. This is the desired contradiction.



COROLLARY: Let N / G, where G/N is solv-
able, and let χ ∈ Irr(G). If θ is an irreducible
constituent of χN , then the integer χ(1)/θ(1) di-
vides |G : N |.



COROLLARY: Let N / G, where G/N is solv-
able, and let χ ∈ Irr(G). If θ is an irreducible
constituent of χN , then the integer χ(1)/θ(1) di-
vides |G : N |.

Proof: In the notation of Clifford’s theorem, we
have χ(1)/θ(1) = et, so this is an integer.



COROLLARY: Let N / G, where G/N is solv-
able, and let χ ∈ Irr(G). If θ is an irreducible
constituent of χN , then the integer χ(1)/θ(1) di-
vides |G : N |.

Proof: In the notation of Clifford’s theorem, we
have χ(1)/θ(1) = et, so this is an integer.

If N = G, then χ = θ, and the result is trivial.
We can thus assume that N < G and we induct
on |G : N |.



If G/N is simple, then since it is solvable, it has
prime order, say p. By the previous theorem,
χ(1)/θ(1) is 1 or p, so we are done in this case.



If G/N is simple, then since it is solvable, it has
prime order, say p. By the previous theorem,
χ(1)/θ(1) is 1 or p, so we are done in this case.

Assuming now that G/N is not simple, there
exists M / G with N < M < G. Let ψ ∈ Irr(M)
lie under χ and over θ.



If G/N is simple, then since it is solvable, it has
prime order, say p. By the previous theorem,
χ(1)/θ(1) is 1 or p, so we are done in this case.

Assuming now that G/N is not simple, there
exists M / G with N < M < G. Let ψ ∈ Irr(M)
lie under χ and over θ.

By the inductive hypothesis, χ(1)/ψ(1) divides
|G : M | and ψ(1)/θ(1) divides |M : N |.



Thus
χ(1)

θ(1)
=
(χ(1)

ψ(1)

)(ψ(1)

θ(1)

)
divides |G : M ||M : N | = |G : N |.



Thus
χ(1)

θ(1)
=
(χ(1)

ψ(1)

)(ψ(1)

θ(1)

)
divides |G : M ||M : N | = |G : N |.

COROLLARY: Let N / G, where G/N is solv-
able, and let χ ∈ Irr(G). If

χN = e

t∑
i=1

θi

as in Clifford’s theorem, then et divides |G : N |.



Thus
χ(1)

θ(1)
=
(χ(1)

ψ(1)

)(ψ(1)

θ(1)

)
divides |G : M ||M : N | = |G : N |.

COROLLARY: Let N / G, where G/N is solv-
able, and let χ ∈ Irr(G). If

χN = e

t∑
i=1

θi

as in Clifford’s theorem, then et divides |G : N |.

Proof: We have et = χ(1)/θi(1).



COROLLARY: Let N / G, where G/N is solv-
able. Let χ ∈ Irr(G), and suppose that χ(1)
and |G : N | are relatively prime. Then χN is
irreducible.



COROLLARY: Let N / G, where G/N is solv-
able. Let χ ∈ Irr(G), and suppose that χ(1)
and |G : N | are relatively prime. Then χN is
irreducible.

Proof: Let θ be an irreducible constituent of χN .
Then χ(1)/θ(1) divides both |G : N | and χ(1).



COROLLARY: Let N / G, where G/N is solv-
able. Let χ ∈ Irr(G), and suppose that χ(1)
and |G : N | are relatively prime. Then χN is
irreducible.

Proof: Let θ be an irreducible constituent of χN .
Then χ(1)/θ(1) divides both |G : N | and χ(1).

Thus χ(1)/θ(1) = 1, and so θ(1) = χ(1). Since θ
is a constituent of χN , it follows that χN = θ.



COROLLARY (Itô): Let N / G, where N is
abelian, and assume that G/N is solvable. Then
the degree of every irreducible character of G
divides |G : N |.



COROLLARY (Itô): Let N / G, where N is
abelian, and assume that G/N is solvable. Then
the degree of every irreducible character of G
divides |G : N |.

Proof: Let χ ∈ Irr(G) and let θ be an irreducible
constituent of χN . Since N is abelian, θ(1) = 1,
so χ(1) = χ(1)/θ(1), and this divides |G : N |.



COROLLARY (Itô): Let N / G, where N is
abelian, and assume that G/N is solvable. Then
the degree of every irreducible character of G
divides |G : N |.

Proof: Let χ ∈ Irr(G) and let θ be an irreducible
constituent of χN . Since N is abelian, θ(1) = 1,
so χ(1) = χ(1)/θ(1), and this divides |G : N |.

Fact: All of the preceding corollaries hold even
without assuming that G/N is solvable.



EXERCISE (7.2): Show cd(G) consists of pow-
ers of a fixed prime p iff G has an abelian normal
subgroup with index a power of p.

HINT: Exercise 7.1.

Note: This is one of many theorems determining
the structure of G from the set cd(G).

EXERCISE (7.3): Let N be a normal Hall π-
subgroup of G, where π is a set of primes, and
let χ ∈ Irr(G). Show that the degrees of the
irreducible constituents of χN are equal to the
π-part of χ(1).



Recall: Products of characters are characters.



Recall: Products of characters are characters.

THEOREM (Gallagher correspondence): Given
N / G and χ ∈ Irr(G), write θ = χN and assume
that θ is irreducible. Then the map β 7→ βχ is a
bijection from Irr(G/N) onto Irr(G|θ).



Recall: Products of characters are characters.

THEOREM (Gallagher correspondence): Given
N / G and χ ∈ Irr(G), write θ = χN and assume
that θ is irreducible. Then the map β 7→ βχ is a
bijection from Irr(G/N) onto Irr(G|θ).

Note: In order for βχ to make sense for a char-
acter β ∈ Irr(G/N), we view β as a character of
G with N ⊆ ker(β).



Proof: Since θ is the restriction to N of a char-
acter of G, we see that θ is invariant in G, and it
follows that (θG)N is a multiple of θ. In fact, a
comparison of degrees yields (θG)N = |G : N |θ.



Proof: Since θ is the restriction to N of a char-
acter of G, we see that θ is invariant in G, and it
follows that (θG)N is a multiple of θ. In fact, a
comparison of degrees yields (θG)N = |G : N |θ.
We have

[θG, θG] = [θ, (θG)N ] = |G : N |[θ, θ] = |G : N | .



Proof: Since θ is the restriction to N of a char-
acter of G, we see that θ is invariant in G, and it
follows that (θG)N is a multiple of θ. In fact, a
comparison of degrees yields (θG)N = |G : N |θ.
We have

[θG, θG] = [θ, (θG)N ] = |G : N |[θ, θ] = |G : N | .

Also

θG = (1Nθ)
G = (1NχN )G = (1N )Gχ .



The irreducible constituents of (1N )G are the
members of Irr(G|1N ). These are exactly the
characters β ∈ Irr(G) with N ⊆ ker(β).



The irreducible constituents of (1N )G are the
members of Irr(G|1N ). These are exactly the
characters β ∈ Irr(G) with N ⊆ ker(β).

In other words, the irreducible constituents of
(1N )G are exactly the members of Irr(G/N).



The irreducible constituents of (1N )G are the
members of Irr(G|1N ). These are exactly the
characters β ∈ Irr(G) with N ⊆ ker(β).

In other words, the irreducible constituents of
(1N )G are exactly the members of Irr(G/N).

If β ∈ Irr(G/N), then

[(1N )G, β] = [1N , βN ] = [1N , β(1)1N ] = β(1) ,

and thus

(1N )G =
∑

β∈Irr(G/N)

β(1)β .



We now have

θG = (1N )Gχ =
∑

β∈Irr(G/N)

β(1)βχ ,

so

|G : N | = [θG, θG] =
∑
β,γ

β(1)γ(1)[βχ, γχ] .



We now have

θG = (1N )Gχ =
∑

β∈Irr(G/N)

β(1)βχ ,

so

|G : N | = [θG, θG] =
∑
β,γ

β(1)γ(1)[βχ, γχ] .

Now [βχ, γχ] ≥ 0, and [βχ, βχ] ≥ 1, and thus



We now have

θG = (1N )Gχ =
∑

β∈Irr(G/N)

β(1)βχ ,

so

|G : N | = [θG, θG] =
∑
β,γ

β(1)γ(1)[βχ, γχ] .

Now [βχ, γχ] ≥ 0, and [βχ, βχ] ≥ 1, and thus

|G : N | ≥
∑

β∈Irr(G/N)

β(1)2 ,



We now have

θG = (1N )Gχ =
∑

β∈Irr(G/N)

β(1)βχ ,

so

|G : N | = [θG, θG] =
∑
β,γ

β(1)γ(1)[βχ, γχ] .

Now [βχ, γχ] ≥ 0, and [βχ, βχ] ≥ 1, and thus

|G : N | ≥
∑

β∈Irr(G/N)

β(1)2 ,

with equality iff [βχ, γχ] = 0 when β 6= γ and
[βχ, βχ] = 1.



In fact,
∑
β(1)2 = |G/N | = |G : N |, and we

deduce that the characters βχ are distinct and
irreducible.



In fact,
∑
β(1)2 = |G/N | = |G : N |, and we

deduce that the characters βχ are distinct and
irreducible.

The map β 7→ βχ is thus an injection from
Irr(G/N) into Irr(G|θ).



In fact,
∑
β(1)2 = |G/N | = |G : N |, and we

deduce that the characters βχ are distinct and
irreducible.

The map β 7→ βχ is thus an injection from
Irr(G/N) into Irr(G|θ).
For surjectivity, recall that

θG =
∑

β(1)βχ ,

and thus the irreducible constituents of θG are
exactly the characters βχ.



EXERCISE (7.4): Write b(G) for the largest
member of the set cd(G) of irreducible character
degrees of G.

(a) If H ⊆ G, show that b(H) ≤ b(G).

(b) If N / G and G/N is nonabelian, show that
b(N) ≤ b(G)/2.

EXERCISE (7.5): Let G be solvable. Show that
the derived length of G is at most 1 + 2 log(b),
where b = b(G) (as in the previous problem) and
the logarithm is base 2.



THEOREM (Clifford correspondence): Given
θ ∈ Irr(N), where N / G, let T be the stabilizer
of θ in G. Then the map η 7→ ηG is a bijection
from Irr(T |θ) onto Irr(G|θ). Also, if η ∈ Irr(T |θ)
and ηG = χ, then [ηN , θ] = [χN , θ].



THEOREM (Clifford correspondence): Given
θ ∈ Irr(N), where N / G, let T be the stabilizer
of θ in G. Then the map η 7→ ηG is a bijection
from Irr(T |θ) onto Irr(G|θ). Also, if η ∈ Irr(T |θ)
and ηG = χ, then [ηN , θ] = [χN , θ].

Proof: Let η ∈ Irr(T |θ). By Clifford’s theorem,
ηN = eθ for some positive integer e.



THEOREM (Clifford correspondence): Given
θ ∈ Irr(N), where N / G, let T be the stabilizer
of θ in G. Then the map η 7→ ηG is a bijection
from Irr(T |θ) onto Irr(G|θ). Also, if η ∈ Irr(T |θ)
and ηG = χ, then [ηN , θ] = [χN , θ].

Proof: Let η ∈ Irr(T |θ). By Clifford’s theorem,
ηN = eθ for some positive integer e.

Now let χ ∈ Irr(G) lie over η, so χ ∈ Irr(G|θ).



THEOREM (Clifford correspondence): Given
θ ∈ Irr(N), where N / G, let T be the stabilizer
of θ in G. Then the map η 7→ ηG is a bijection
from Irr(T |θ) onto Irr(G|θ). Also, if η ∈ Irr(T |θ)
and ηG = χ, then [ηN , θ] = [χN , θ].

Proof: Let η ∈ Irr(T |θ). By Clifford’s theorem,
ηN = eθ for some positive integer e.

Now let χ ∈ Irr(G) lie over η, so χ ∈ Irr(G|θ).
By Clifford’s theorem, there is a positive integer
f such that



χN = f
t∑
i=1

θi ,

where the θi ∈ Irr(N) are distinct and form the
full G-orbit of θ. Note that t = |G : T |.



χN = f
t∑
i=1

θi ,

where the θi ∈ Irr(N) are distinct and form the
full G-orbit of θ. Note that t = |G : T |.

Since η is a constituent of χT , we have e ≤ f .
Also, χ is a constituent of ηG, so χ(1) ≤ ηG(1).

We conclude that



ftθ(1) = χ(1) ≤ ηG(1) = |G : T |η(1)

= tη(1)

= etθ(1)

≤ ftθ(1) .



ftθ(1) = χ(1) ≤ ηG(1) = |G : T |η(1)

= tη(1)

= etθ(1)

≤ ftθ(1) .

Equality thus holds throughout, and we deduce
that ηG = χ and e = f .



ftθ(1) = χ(1) ≤ ηG(1) = |G : T |η(1)

= tη(1)

= etθ(1)

≤ ftθ(1) .

Equality thus holds throughout, and we deduce
that ηG = χ and e = f .

Thus η 7→ ηG carries Irr(T |θ) to Irr(G|θ), and
if ηG = χ, then [ηN , θ] = e = f = [χN , θ], as
required.



It remains to show that the map η 7→ ηG is a
bijection from Irr(T |θ) onto Irr(G|θ).



It remains to show that the map η 7→ ηG is a
bijection from Irr(T |θ) onto Irr(G|θ).

For injectivity, suppose that η, ψ ∈ Irr(T |θ) and
ηG = χ = ψG.



It remains to show that the map η 7→ ηG is a
bijection from Irr(T |θ) onto Irr(G|θ).

For injectivity, suppose that η, ψ ∈ Irr(T |θ) and
ηG = χ = ψG.

Now η and ψ are constituents of χT , so if η 6= ψ,
then

[χN , θ] ≥ [ηN , θ] + [ψN , θ] = [χN , θ] + [χN , θ] ,

and this is a contradiction since [χN , θ] > 0.



Finally, for surjectivity, let χ ∈ Irr(G|θ).



Finally, for surjectivity, let χ ∈ Irr(G|θ).
Since χ lies over θ, it lies over some character
η ∈ Irr(T ) such that η lies over θ.



Finally, for surjectivity, let χ ∈ Irr(G|θ).
Since χ lies over θ, it lies over some character
η ∈ Irr(T ) such that η lies over θ.

Then χ is a constituent of ηG, and since we know
that ηG is irreducible, we have ηG = χ, so our
map carries η to χ.

EXERCISE (7.6): Let θ ∈ Irr(N), where N /
G. Show that θG is irreducible iff N is the full
stabilizer of θ in G.



EXERCISE (7.7): A character χ ∈ Irr(G) is
primitive if there does not exist H < G and a
character ψ of H such that χ = ψG. Suppose
that χ ∈ Irr(G) is primitive.

(a) If N / G, show that χN is a multiple of an
irreducible character of N .

(b) Let A / G with A is abelian. Show that
A ⊆ Z(χ).

Note: It follows that if G has a faithful primitive
character, then Z(G) is cyclic and is the unique
largest abelian normal subgroup of G.



EXERCISE (7.8): Show that a primitive char-
acter of a p-group must be linear.

HINT: If χ ∈ Irr(G) then when χ is viewed as a
character of G/ker(χ), it is faithful. Also, if χ is
primitive as a character of G, it is also primitive
as a character of G/ker(χ).



Chapter 8:

THEOREMS OF ITÔ AND MICHLER



THEOREM (Itô): Assume that G is solvable.
Then G has an abelian normal Sylow p-subgroup
iff no member of cd(G) is divisible by p.



THEOREM (Itô): Assume that G is solvable.
Then G has an abelian normal Sylow p-subgroup
iff no member of cd(G) is divisible by p.

In this chapter, we prove Itô’s theorem, and we
discuss its generalization (proved by Michler) to
the case where G is not necessarily solvable.



THEOREM (Itô): Assume that G is solvable.
Then G has an abelian normal Sylow p-subgroup
iff no member of cd(G) is divisible by p.

In this chapter, we prove Itô’s theorem, and we
discuss its generalization (proved by Michler) to
the case where G is not necessarily solvable.

Michler’s argument relies on the classification of
simple groups and a case-by-case study of the
various simple groups. This type of argument
has (unfortunately) become a standard method
for proving results in character theory.



First, we discuss the assertion that if G has a
normal abelian Sylow p-subgroup, then p does
not divide any member of cd(G).

More generally, we have the following:

THEOREM (Itô divisibility): Let A / G with
A abelian. Then χ(1) divides |G : A| for all
χ ∈ Irr(G).



First, we discuss the assertion that if G has a
normal abelian Sylow p-subgroup, then p does
not divide any member of cd(G).

More generally, we have the following:

THEOREM (Itô divisibility): Let A / G with
A abelian. Then χ(1) divides |G : A| for all
χ ∈ Irr(G).

We have already seen that this is a consequence
of the fact that χ(1)/θ(1) divides |G : N |, where
N / G and χ ∈ Irr(G) lies over θ ∈ Irr(N).



This result is true in general, but we proved it
only in the case where G/N is solvable.



This result is true in general, but we proved it
only in the case where G/N is solvable.

A different approach to Itô’s divisibility theorem
is to use another fact that we stated without
proof: χ(1) divides |G : Z(G)| for all χ ∈ Irr(G).



This result is true in general, but we proved it
only in the case where G/N is solvable.

A different approach to Itô’s divisibility theorem
is to use another fact that we stated without
proof: χ(1) divides |G : Z(G)| for all χ ∈ Irr(G).

Assuming this, it is easy to show that χ(1) di-
vides |G : Z(χ)| for all χ ∈ Irr(G).



This result is true in general, but we proved it
only in the case where G/N is solvable.

A different approach to Itô’s divisibility theorem
is to use another fact that we stated without
proof: χ(1) divides |G : Z(G)| for all χ ∈ Irr(G).

Assuming this, it is easy to show that χ(1) di-
vides |G : Z(χ)| for all χ ∈ Irr(G).

To see this, view χ as a character of G/ker(χ)
and observe that Z(χ)/ker(χ) = Z(G/ker(χ)).
Thus the index of the center of G/ker(χ) is ex-
actly |G : Z(χ)|.



Proof of the divisibility theorem: By hypothesis,
χ ∈ Irr(G) and A / G with A abelian. Let λ
be a linear constituent of χA and let T be the
stabilizer of λ in G.



Proof of the divisibility theorem: By hypothesis,
χ ∈ Irr(G) and A / G with A abelian. Let λ
be a linear constituent of χA and let T be the
stabilizer of λ in G.

Let ψ ∈ Irr(T |λ) be the Clifford correspondent
of χ. Then χ = ψG, so χ(1) = |G : T |ψ(1) and
it suffices to show that ψ(1) divides |T : A|.



Proof of the divisibility theorem: By hypothesis,
χ ∈ Irr(G) and A / G with A abelian. Let λ
be a linear constituent of χA and let T be the
stabilizer of λ in G.

Let ψ ∈ Irr(T |λ) be the Clifford correspondent
of χ. Then χ = ψG, so χ(1) = |G : T |ψ(1) and
it suffices to show that ψ(1) divides |T : A|.
Now ψA is a multiple of the linear character λ,
so A ⊆ Z(ψ). We have seen that ψ(1) divides
|T : Z(ψ)|, and this, in turn, divides |T : A|, as
required



We now discuss the converse. We would like to
prove that if the prime p divides no member of
cd(G), then a Sylow p-subgroup of G is normal
and abelian.



We now discuss the converse. We would like to
prove that if the prime p divides no member of
cd(G), then a Sylow p-subgroup of G is normal
and abelian.

If G is simple and has no irreducible character
of degree divisible by p, we would want it to be
true that G has a normal Sylow p-subgroup. If
G has prime order, this clearly is true, but if G is
nonabelian, the only way this could happen is if
p does not divide |G|, so the identity is a normal
Sylow p-subgroup.



Let us say that a nonabelian simple group G is
bad for the prime p if p divides |G| but p divides
no member of cd(G).



Let us say that a nonabelian simple group G is
bad for the prime p if p divides |G| but p divides
no member of cd(G).

If the fully general version of Itô’s theorem is
true, therefore, it would have to be the case that
bad simple groups do not exist.



Let us say that a nonabelian simple group G is
bad for the prime p if p divides |G| but p divides
no member of cd(G).

If the fully general version of Itô’s theorem is
true, therefore, it would have to be the case that
bad simple groups do not exist.

Perhaps surprisingly, the converse of this state-
ment is also true. If there do not exist any bad
simple groups, then the fully general Itô theorem
holds.



In fact more is true.

THEOREM: Let p be a prime that divides no
member of cd(G), and suppose that no compo-
sition factor of G is bad for p. Then G has an
abelian normal Sylow p-subgroup.



In fact more is true.

THEOREM: Let p be a prime that divides no
member of cd(G), and suppose that no compo-
sition factor of G is bad for p. Then G has an
abelian normal Sylow p-subgroup.

The original Itô theorem (for solvable groups) is
an immediate consequence.



In fact more is true.

THEOREM: Let p be a prime that divides no
member of cd(G), and suppose that no compo-
sition factor of G is bad for p. Then G has an
abelian normal Sylow p-subgroup.

The original Itô theorem (for solvable groups) is
an immediate consequence.

Using the classification, Michler showed that bad
simple groups do not exist, so solvability in Itô’s
theorem is unnecessary. This proves what is
called the Itô-Michler theorem.



We will need the following.

LEMMA: Let P be a p-group acting via auto-
morphisms on a group N , where p does not di-
vide |N |, and assume that P fixes all members
of Irr(N). Then the action of P on N is trivial.



We will need the following.

LEMMA: Let P be a p-group acting via auto-
morphisms on a group N , where p does not di-
vide |N |, and assume that P fixes all members
of Irr(N). Then the action of P on N is trivial.

Proof: In general, an automorphism of N fixes
equal numbers of irreducible characters of N and
classes of N . (This follows by Brauer’s character
table permutation lemma.)



If x ∈ P , then by hypothesis, x fixes all ir-
reducible characters of N , and thus it fixes all
classes of N .



If x ∈ P , then by hypothesis, x fixes all ir-
reducible characters of N , and thus it fixes all
classes of N .

Let K be a class of N . Then P acts on K, and
since |K| 6≡ 0 mod p, it follows that P fixes an
element of K. Thus K ∩ C 6= ∅, where C =
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If x ∈ P , then by hypothesis, x fixes all ir-
reducible characters of N , and thus it fixes all
classes of N .

Let K be a class of N . Then P acts on K, and
since |K| 6≡ 0 mod p, it follows that P fixes an
element of K. Thus K ∩ C 6= ∅, where C =
CN (P ).

It follows that K ⊆
⋃
Cx, where x runs over G.

Then N =
⋃
Cx, and we argue that C = N .



Otherwise, there must be more than one conju-
gate of C in N so

|N | =
∣∣ ⋃
x∈N

Cx
∣∣ < ∑

x∈N
|Cx| ≤ |N : C||C| = |N | ,

and this is a contradiction. Thus C = N , so the
action of P is trivial.



Proof of composition factor theorem: If N / G
and θ ∈ Irr(N), let χ ∈ Irr(G) lie over θ. Then
θ(1) divides χ(1) by Clifford’s theorem, so p does
not divide θ(1), and thus N satisfies the hy-
potheses of the theorem. Also G/N satisfies the
hypothesis since irreducible characters of G/N
can be viewed as irreducible characters of G.



Proof of composition factor theorem: If N / G
and θ ∈ Irr(N), let χ ∈ Irr(G) lie over θ. Then
θ(1) divides χ(1) by Clifford’s theorem, so p does
not divide θ(1), and thus N satisfies the hy-
potheses of the theorem. Also G/N satisfies the
hypothesis since irreducible characters of G/N
can be viewed as irreducible characters of G.

If P / G, where P is a p-group then cd(P ) con-
sists of powers of p. It follows by the above
that cd(P ) = {1}, so P is abelian. It suffices,
therefore, to show that G has a normal Sylow
p-subgroup.



There is nothing to prove if G is trivial, so we
can assume G > 1, and we induct on |G|. Let N
be maximal normal in G.
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There is nothing to prove if G is trivial, so we
can assume G > 1, and we induct on |G|. Let N
be maximal normal in G.

Since N satisfies the hypothesis of the theorem,
the inductive hypothesis tells us that N has a
normal Sylow p-subgroup P , and P / G.

If P > 1, the inductive hypothesis says that G/P
has a normal Sylow p-subgroup S/P . Then S is
a normal Sylow p-subgroup of G, as wanted

We can now assume that P = 1, and thus p does
not divide |N |.
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can thus assume that p divides |G/N |.
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can thus assume that p divides |G/N |.
Now G/N is a simple group, and no member of
cd(G/N) is divisible by p. Also, p divides |G/N |,
and by hypothesis, G/N is not bad. It follows
that G/N is not a nonabelian simple group, and
we conclude that |G/N | = p.



If |G/N | is not divisible by p, then |G| is not
divisible by p, and there is nothing to prove. We
can thus assume that p divides |G/N |.
Now G/N is a simple group, and no member of
cd(G/N) is divisible by p. Also, p divides |G/N |,
and by hypothesis, G/N is not bad. It follows
that G/N is not a nonabelian simple group, and
we conclude that |G/N | = p.

Let θ ∈ Irr(N). Then θ must be G-invariant
since otherwise, N is the stabilizer of θ, and thus
θG is irreducible with degree divisible by p.



Let S be a Sylow p-subgroup of G. Then G =
NS and S fixes all members of Irr(N), so by the
lemma, S acts trivially on N . Then

N ⊆ CG(S) ⊆ NG(S) ,

and hence S / G.



Chapter 9:

M-GROUPS
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A character χ of a group G is monomial if there
exists a subgroup H ⊆ G and a linear character
λ of H such that λG = χ.

Note: Every linear character of G is monomial.
(Simply take H to be G in the above definition.)

A group G is an M-group if every irreducible
character of G is monomial.

THEOREM (Taketa): Let G be an M-group.
Then G is solvable and the derived length of G
is at most |cd(G)|.
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Digression on solvable groups:

The derived subgroup (also called the commuta-
tor subgroup) of G is the subgroup generated by
all elements of G of the form [x, y] = x−1y−1xy.

This characteristic subgroup is usually denoted
G′, but sometimes the notation G(1) is used.

Note: G is abelian iff G′ = 1.

The derived subgroup G′′ of G′ is sometimes de-
noted G(2) and its derived subgroup G′′′ is usu-
ally denoted G(3), and so on.



The derived series of G is the chain
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characteristic in G.



The derived series of G is the chain

G = G0 ⊇ G(1) ⊆ G(2) ⊇ G(3) ⊇ · · · .

Note that all terms of the derived series of G are
characteristic in G.

If G(m) = 1 for some integer m, then G is solv-
able and the derived length of G (denoted dl(G))
is the smallest integer m such that G(m) = 1.



There are several properties equivalent (for finite
groups) to solvability. Sometimes one or another
of these is used as the definition.



There are several properties equivalent (for finite
groups) to solvability. Sometimes one or another
of these is used as the definition.

Exercise (9.1): Let N / G. Show that G is solv-
able iff both N and G/N are solvable, and in
this case, show that dl(G) ≤ dl(N) + dl(G/N).

Exercise (9.2): Let G be finite. Show that the
following are equivalent.

(1) G is solvable.
(2) The chief factors of G are abelian.
(3) The composition factors of G are cyclic.
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We need the following for Taketa’s theorem.

LEMMA: Let H ⊆ G, and let α be a character
of H. Then ker(αG) ⊆ H.

Proof: If g ∈ ker(αG), then αG(g) = αG(1) so∑
x∈G

α0(xgx−1) =
∑
x∈G

α0(1) =
∑
x∈G

α(1) .

But |α0(xgx−1)| ≤ α(1) for all x ∈ G, so equality
holds for all x.

Then |α0(g)| = α(1) 6= 0, so g ∈ H.
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Proof of Taketa’s theorem: Write

cd(G) = {f1, f2, f3, . . . , fr} ,
where

1 = f1 < f2 < f3 · · · < fr .

Note that r = |cd(G)|.

We will show by induction on k that if χ ∈ Irr(G)
and χ(1) = fk, then G(k) ⊆ ker(χ).

It will then follow that G(r) ⊆ ker(χ) for all χ ∈
Irr(G), so G(r) = 1. Then G is solvable and
dl(G) ≤ r = |cd(G), as required.
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k = 1, then χ is linear, so G′ ⊆ ker(χ), and this
is the base case of the induction.
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We are given χ ∈ Irr(G) with χ(1) = fk. If
k = 1, then χ is linear, so G′ ⊆ ker(χ), and this
is the base case of the induction.

Now assume k > 1. Since χ is monomial, we can
write χ = λG, where λ is a linear character of
some subgroup H ⊆ G.

We have

fk = χ(1) = λG(1) = |G : H|λ(1) = |G : H| .
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so (1H)G = 1G + Ξ, where each irreducible con-
stituent of Ξ has degree smaller that fk.
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Now
(1H)G(1) = |G : H| = fk ,

so (1H)G = 1G + Ξ, where each irreducible con-
stituent of Ξ has degree smaller that fk.

By the inductive hypothesis, G(k−1) is contained
in the kernel of every irreducible constituent of
(1H)G. Thus

G(k−1) ⊆ ker((1H)G) ⊆ H ,

where the final containment is by the lemma.



We thus have

G(k) = (G(k−1))′ ⊆ H ′ ⊆ ker(λ) .



We thus have

G(k) = (G(k−1))′ ⊆ H ′ ⊆ ker(λ) .

Now χ lies over λ and λ lies over the principal
character of G(k), so χ lies over 1G(k) .



We thus have

G(k) = (G(k−1))′ ⊆ H ′ ⊆ ker(λ) .

Now χ lies over λ and λ lies over the principal
character of G(k), so χ lies over 1G(k) .

By Clifford’s theorem, therefore, the principal
character of G(k) is the unique irreducible con-
stituent of χG(k) .



We thus have

G(k) = (G(k−1))′ ⊆ H ′ ⊆ ker(λ) .

Now χ lies over λ and λ lies over the principal
character of G(k), so χ lies over 1G(k) .

By Clifford’s theorem, therefore, the principal
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We thus have

G(k) = (G(k−1))′ ⊆ H ′ ⊆ ker(λ) .

Now χ lies over λ and λ lies over the principal
character of G(k), so χ lies over 1G(k) .

By Clifford’s theorem, therefore, the principal
character of G(k) is the unique irreducible con-
stituent of χG(k) .

Then G(k) ⊆ ker(χ), as required.

Open question: Is it true that dl(G) ≤ |cd(G)|
for general solvable groups?



EXERCISE (9.3): Show that nilpotent groups
are M-groups.

HINT: Show that a primitive irreducible charac-
ter of a nilpotent group G must be linear. To
do this, assume χ ∈ Irr(G) is not linear and
consider a subgroup N / G maximal with the
property that χN is reducible. Show that χN is
not a multiple of an irreducible character.

EXERCISE (9.4): Suppose G′ is abelian. Show
that G is an M-group.



EXERCISE (9.5): Let χ ∈ Irr(G) be monomial,
and suppose that A / G with A abelian. Show
that there exists a subgroup H with A ⊆ H ⊆ G
and a linear character λ of H such that λG = χ.

HINTS: We have χ = µG where µ is a linear
character of some subgroup J ⊆ G. Let K = AJ
and ψ = µK and note that ψ is irreducible. Let
θ ∈ Irr(A) lie under ψ. Use Exercise 6.1 to show
that [ψA, θ] = 1. Use the Clifford correspon-
dence in the group K.



Every M-group is solvable, but not every solv-
able group is an M-group. The smallest exam-
ple of a solvable group that is not an M-group
is SL(2, 3), which has order 24. We have seen
that every nilpotent group is an M-group, so the
class of M-groups fits somehow between “nilpo-
tent” and “solvable”.



Every M-group is solvable, but not every solv-
able group is an M-group. The smallest exam-
ple of a solvable group that is not an M-group
is SL(2, 3), which has order 24. We have seen
that every nilpotent group is an M-group, so the
class of M-groups fits somehow between “nilpo-
tent” and “solvable”.

In fact, there is a class of groups called “super-
solvable” groups, lying between nilpotent and
solvable. All supersolvable groups are M-groups,
but not conversely.
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A theorem of Dade shows that every solvable
group is a subgroup of an M-group. It follows
that M-groups can have non-M-subgroups, but
certain subgroups of M-groups can be proved to
be M-groups.

THEOREM: Let G be an M-group and suppose
that N / G and that |N | and |G : N | are rela-
tively prime. Then N is an M-group.

This suggests two interesting questions:

Can we drop the normality hypothesis?
Can we drop the coprimeness hypothesis?
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Relatively recently, examples were constructed
that show that coprimeness without normality
is not sufficient to guarantee that a subgroup of
an M-group is an M-group.

Dade and van der Waall (separately) constructed
an example that shows that normality without
coprimeness is also not sufficient.

The Dade/van der Waall example involves the
prime 2 in an essential way. It is unknown if
a normal subgroup of an M-group having odd
order or odd index must be an M-group.
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show that θ is monomial. Let χ ∈ Irr(G) lie over
θ and write χ = λG, where λ is a linear character
of some subgroup H of G.
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Now (λNH)G = λG = χ and this is irreducible.
Thus λNH is irreducible. We have λNH(1) =
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Proof of theorem: Let θ ∈ Irr(N), so we must
show that θ is monomial. Let χ ∈ Irr(G) lie over
θ and write χ = λG, where λ is a linear character
of some subgroup H of G.

Now (λNH)G = λG = χ and this is irreducible.
Thus λNH is irreducible. We have λNH(1) =
|NH : H| = |N : N ∩H|, and this divides |N |.

Then λNH is an irreducible character of NH
with degree relatively prime to |NH : N | and
thus (λNH)N is irreducible.



Write
ϕ = (λNH)N = (λN∩H)N ,

so ϕ is monomial.



Write
ϕ = (λNH)N = (λN∩H)N ,

so ϕ is monomial.

Now ϕ lies under λNH and λNH lies under χ.
By Clifford’s theorem, it follows that that ϕ and
θ are conjugate in G. Since ϕ is monomial, θ is
also monomial.


