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1. The Plücker algebra

Let κ be a field, let 1 ≤ m ≤ n be positive integers, and consider the matrix of indeterminates

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn


We write S = κ[xij ] and consider the subring R ⊂ S generated by the m×m (i.e. maximal size) minors

of the matrix X. We will see in the course of this week that R is a normal, Cohen-Macaulay graded

algebra of dimension 1 +m · (n−m).

The ring R is called the Plücker algebra and it arises naturally from two closely related constructions:
1
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• Algebraically, we think of S as the ring of polynomial functions on the vector space κm×n of m×n
matrices. The group SLm(κ) of m×m invertible matrices M with det(M) = 1 acts on κm×n via

left multiplication, and R ⊂ S is precisely the subring of SLm(κ)-invariant polynomial functions:

R = {f ∈ S : f(g ·M) = f(M) for all g ∈ SLm(κ) and all M ∈ κm×n}.

• Geometrically, R is the homogeneous coordinate ring of the Grassmannian variety parametrizing

m-dimensional vector subspaces of κn.

The Plücker algebra has a nice presentation by generators and relations as follows. For any m-tuple

of (not necessarily distinct) columns of X, indexed by 1 ≤ c1, · · · , cm ≤ n, we consider the m×m minor

[c1, · · · , cm] = det(xi,cj )1≤i,j≤m

and note that [c1, · · · , cm] = 0 unless the ci are distinct, and that moreover any permutation σ of

c1, · · · , cm acts on the minor [c1, · · · , cm] via multiplication by the sign of σ. It is clear that the expressions

[c1, · · · , cm] with 1 ≤ c1 < · · · < cm ≤ n generate R as a κ-algebra. It is then interesting to study the

polynomial relations between these generators, which are called the Plücker relations and are given in

Lemma 1.3 below. Before stating them, we need some preliminary facts.

Let A be any ring, and let M,N be A-modules. A multilinear map f : M⊕q −→ N is a function with

the property that for every i = 1, · · · , q and every fixed choice of m1, · · · ,mi−1,mi+1, · · · ,mq ∈ M the

induced map

f(m1, · · · ,mi−1, •,mi+1, · · · ,mq) : M −→ N is A-linear.

A multilinear map f : M⊕q −→ N is called alternating if for every m1, · · · ,mq ∈M for which there exist

i 6= j with mi = mj we have

f(m1, · · · ,mq) = 0. (1.1)

It follows that for every permutation σ ∈ Sq we have

f(mσ(1), · · · ,mσ(q)) = sgn(σ) · f(m1, · · · ,mq)

and this condition is equivalent to the fact that f is alternating when 2 = 1 + 1 is invertible in A.

The main example of an alternating map is the determinant. Let M = A⊕q and think of the elements

of M as column vectors. If we write [m1, · · · ,mq] for the determinant of the q× q matrix whose columns

are m1, · · · ,mq, then the function f(m1, · · · ,mq) = [m1, · · · ,mq] is alternating. We have

Lemma 1.1. If M = A⊕p is a free module of rank p and if p < q then any alternating map f : M q −→ N

is zero.
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Proof. Fix a basis e1, · · · , ep of M and note that by multilinearity the function f is determined by its

values on tuples (ei1 , · · · , eiq) of basis vectors. Any such tuple necessary has repetitions since q > p, so

f vanishes identically by (1.1). �

Corollary 1.2. Let A be any ring, fix 1 ≤ k ≤ m− 1 and consider

v1, · · · , vk, wk+2, · · · , wm, u1, · · · , um+1 ∈ A⊕m.

We have∑
σ∈Sm+1

sgn(σ) · [v1, · · · , vk, uσ(1), · · · , uσ(m−k)] · [uσ(m−k+1), · · · , uσ(m+1), wk+2, · · · , wm] = 0

Proof. Fix v1, · · · , vk, wk+2, · · · , wm and consider the left hand side of the above expression as a function

f : M⊕(m+1) −→ A, where M = A⊕m. The function f is alternating and m < m + 1 hence f = 0 by

Lemma 1.1. �

Lemma 1.3. Fix k ∈ {1, · · · ,m−1} consider elements c1, · · · , ck, dk+2, · · · , dm, a1, · · · , am+1 ∈ {1, · · · , n}.
We have ∑

i1<···<im−k
im−k+1<···<im+1

{i1,··· ,im+1}={1,··· ,m+1}

sgn(i•) · [c1, · · · , ck, ai1 , · · · , aim−k
] · [aim−k+1

, · · · , aim+1 , dk+2, · · · , dm] = 0, (1.2)

where we regard i• as the permutation σ ∈ Sm+1 given by σ(j) = ij, and we define sgn(i•) to be sgn(σ).

Proof. It is enough to prove this relation when working over Z (take κ = Z). In this case, after multiplying

(1.2) by (m− k)! · (k+ 1)! and using the fact that determinants are alternating functions of the columns

of a matrix, the relation (1.2) becomes equivalent to∑
σ∈Sm+1

sgn(σ) · [c1, · · · , ck, aσ(1), · · · , aσ(m−k)] · [aσ(m−k+1), · · · , aσ(m+1), dk+2, · · · , dm] = 0

This identity is a special case of Corollary 1.2, which concludes our proof. �

Example 1.4. If m = 2, n = 4 and k = 1 then we get

[1, 2] · [3, 4]− [1, 3] · [2, 4] + [1, 4] · [2, 3] = 0.

We will represent a product of d maximal minors as a d × m array which we will call a tableau,

where a row with entries c1, · · · , cm corresponds to the minor [c1, · · · , cm] . For instance the equalities in
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Example 1.4 will be written as (we color blue the boxes corresponding to the ai’s in the Plücker relation)

1 2

3 4
−

1 3

2 4
+

1 4

2 3
(1.3)

We will call a tableau standard if it is strictly increasing along rows and weakly increasing along columns

(in the literature these tableaux, or their transposed versions, are typically called semi-standard!). For

instance (we color red the boxes that exhibit the failure of standardness)

1 2

2 3

2 3

is standard, but
1 4

2 3
and

2 2

3 4
are not.

The Plücker relations can be pictured in terms of (two row) tableaux as

∑
i1<···<im−k

im−k+1<···<im+1

{i1,··· ,im+1}={1,··· ,m+1}

sgn(i•) ·
c1 · · · ck ai1 · · · · · · aim−k

aim−k+1
· · · · · · aim+1 dk+2 · · · dm

= 0 (1.4)

They induce relations between d×m tableaux for any d ≥ 2 in the obvious way. For instance multiplying

the relations (1.3) by [2, 4] · [2, 3] we obtain (we color green the rows that are not involved in the Plücker

relation)

1 2

3 4

2 4

2 3

−

1 3

2 4

2 4

2 3

+

1 4

2 3

2 4

2 3

= 0

where all the interesting action takes place in the first two rows.

In what follows we will consider the grading of the Plücker algebra obtained by declaring that [c1, · · · , cm]

has degree one (note that this differs from the grading induced from the standard grading on S by a factor

of 1/m). We will also think of tableaux as elements of R (or S) as explained earlier. With this convention

we have

Theorem 1.5. The degree d component Rd of the Plücker algebra has a basis consisting of standard

d×m tableaux with entries in {1, · · · , n}. In particular, any d×m tableau can be expressed uniquely as

a linear combination of standard tableaux.

The linear independence of standard tableaux follows from the following easy linear algebra fact:
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Lemma 1.6. Let E be a vector space with a totally ordered basis e1, e2, · · · , and for every vector

0 6= v =
∑
i

ai · ei in E

define the leading term of v to be lt(v) = ei0 if ai0 6= 0 and ai = 0 for i < i0. If v1, · · · ,vk are non-zero

vectors in E with distinct leading terms then they are linearly independent.

If we order the pairs {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} lexicographically, i.e.

(1, 1) < (1, 2) < · · · < (1, n) < (2, 1) < (2, 2) < · · · < (m,n) (1.5)

then this induces a lexicographic ordering of the monomials in S given by∏
x
aij
ij <

∏
x
bij
ij if for the smallest (i, j) for which aij 6= bij we have aij > bij .

This yields a total ordering of the monomial basis of the κ-vector space S as in Lemma 1.6, with the

property that

lt([c1, · · · , cm]) = x1,c1 · x2,c2 · · ·xm,cm if c1 < c2 < · · · < cm.

In particular if T, T ′ are tableaux with increasing rows then lt(T ) = lt(T ′) if and only if for each k =

1, · · · ,m the entries in the k-th column of T and T ′ are the same (up to permutation). Since no non-

trivial permutation of a weakly increasing sequence is weakly increasing, it follows that distinct standard

tableaux have distinct leading terms and Lemma 1.6 applies to prove that standard tableaux are linearly

independent. To prove that standard tableaux span R we show the following stronger result.

Lemma 1.7. Every d×m tableau T can be expressed modulo the Plücker relations as a linear combination

of standard tableaux.

Proof. We say that a tableau T is normalized if each of its rows is strictly increasing, and if the rows

are arranged in increasing lexicographic order. Any tableau T either has repeated entries in some row

(in which case T = 0 in R) or it is equal up to sign with a normalized tableau (permuting the entries in

a row of a tableau can only affect the sign, while permuting the rows has no effect on the corresponding

polynomial; we can thus first sort the entries in each row, and then sort the rows lexicographically in

order to obtain a normalized tableau). It then suffices to show that every normalized tableau can be

expressed modulo the Plücker relations as a linear combination of standard tableaux.

If we identify a d × m tableau with a string of length d · m by reading its entries from left to right

and top to bottom, then we can order the normalized tableaux by considering the lexicographic ordering

of the corresponding strings. Assume that there exists a normalized tableau which cannot be expressed

modulo the Plücker relations as a linear combination of standard tableaux, and consider T to be the
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lexicographically smallest such tableau. Let (i, k + 1) with 1 ≤ i ≤ d and 1 ≤ k + 1 ≤ m be the

lexicographically smallest pair such that if we let [c1, · · · , cm] be the i-th row of T , and [d1, · · · , dm] be

the (i+ 1)-st row, then ck+1 > dk+1. We define a1, · · · , am+1 by the equality

(a1, · · · , am+1) = (ck+1, · · · , cm, d1, · · · , dk+1)

and apply Lemma 1.3. Using the Plücker relation (1.4) and renormalizing the resulting tableaux allows us

to express T as a linear combination of lexicographically smaller normalized tableaux. By the minimality

of T , each such tableau is a linear combination of standard tableaux modulo the Plücker relations, so the

same must be true about T . This contradicts the assumption on T and concludes the proof. �

Theorem 1.5 and Lemma 1.7 show that the Plücker relations generate all the polynomial relations

between the m×m minors of X. To state this precisely, we let [n] = {1, · · · , n} and write(
[n]

m

)
= {(c1, · · · , cm) : 1 ≤ c1 < c2 < · · · < cm ≤ n}

for the collection of m-element subsets of [n]. It will be important to consider the partial order on
(
[n]
m

)
given by

(c1, · · · , cm) ≤ (d1, · · · , dm) if and only if ci ≤ di for all i = 1, · · · ,m. (1.6)

We say that
(
[n]
m

)
is a poset (partially ordered set) and we call it the Plücker poset. We consider the

polynomial ring

P = κ

[
pc : c ∈

(
[n]

m

)]
and the surjective ring homomorphism π : P � R defined by pc 7→ [c1, · · · , cm].

Theorem 1.8. The kernel of π is the ideal generated by the quadratic Plücker relations determined by

Lemma 1.3.

Proof. Let I be the ideal generated by the Plücker relations and note that I ⊆ ker(π). To show the

equality, consider any polynomial f ∈ ker(π): using the Plücker relations as in Lemma 1.7 we can express

f = g +
∑
i

ai · (pc1 · pc2 · · · )

where ai ∈ κ, g ∈ I and c1 ≤ c2 ≤ · · · . Applying the map π and using the fact that π(f) = 0 (by

assumption) and that π(g) = 0 (since I ⊆ ker(π)) it follows that

0 =
∑
i

ai · ([c1] · [c2] · · · )
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Since c1 ≤ c2 ≤ · · · it follows that each product [c1] · [c2] · · · is equal to a standard tableau. Since standard

tableaux are linearly independent we obtain that all coefficients ai = 0 and hence f = g ∈ I, concluding

the proof. �

The polynomial ring P is the homogeneous coordinate ring of the projective space P(n
m)−1. The ideal

I = ker(π) of Plücker relations defines a projective algebraic variety called the Grassmann variety. The

points of this variety are in bijective correspondence with the collection of m-dimensional subspaces of

κn. The presentation of the Plücker algebra as a quotient of a polynomial ring is just the first step in the

construction of its minimal free resolution. It is then natural to ask the following

Open Question 1.9. What is the minimal free resolution of R as a P -module?

In the case when m = 2 or m = n− 2, the Plücker algebra can be identified with the coordinate ring

of the algebraic variety of skew-symmetric matrices of rank ≤ 2. When char(κ) = 0, the minimal free

resolution (as well as the corresponding resolutions of coordinate rings of matrices of higher rank) can be

found in [Wey03, Section 6.4].

A natural variant of the Plücker algebra is obtained by considering lower order minors. For 1 ≤ t ≤ m
define R(t) to be the κ-algebra generated by the t × t minors of the matrix X. In this case we do not

even know the presentation of the algebra:

Open Question 1.10. What are the defining relations of the algebra R(t) for 1 < t < m?

This problem has been investigated in [BCV13] in the case when char(κ) = 0, where the authors

conjectured that the ideal of relations is generated by quadratic and cubic polynomials, and gave a

complete conjectural description of these generators.

It will be useful for the exercises below, as well as in the last section where we discuss determinantal

varieties, to consider more general tableaux than the rectangular ones. First of all recall that a partition

λ is a non-increasing sequence of natural numbers λ = (λ1 ≥ λ2 ≥ · · · ), and can be represented pictorially

by a Young diagram of left justified rows of boxes, having λi boxes in row i. For example, λ = (4, 2, 1)

corresponds to the Young diagram

We identify any partition λ = (λ1 ≥ λ2 ≥ · · · ) with a subset λ ⊂ N × N consisting of all the pairs (i, j)

with 1 ≤ j ≤ λi, so λ = (4, 2, 1) correponds to

λ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1)}.
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Given a partition λ ⊂ N×N, a tableau T of shape λ is a function T : λ −→ N, or equivalently a filling of

the boxes of the Young diagram of λ with natural numbers. We write |T | for the Young diagram defining

the shape of T . A tableau T is standard if it is strictly increasing along rows and weakly increasing down

columns. When λ = (m,m, · · · ,m) has d parts equal to m, the Young diagram of λ is just a d × m
rectangle, and a tableau of shape λ is just a d×m rectangular array of numbers as discussed earlier. You

will explore the following question in the exercises:

Question 1.11. What is the number kλ(n) of standard tableaux of shape λ with entries in {1, 2, · · · , n}?

The numbers kλ(n) are called Kostka numbers and they compute dimensions of irreducible represen-

tations of the group GLn. A general formula (which we won’t prove here) is given as follows. Consider

the tableau T defined by

T (i, j) = n+ i− j for (i, j) ∈ λ.

When λ = (4, 2, 1) and n = 5 we get

T =

5 4 3 2

6 5

7

Given a partition λ, the hook H i,j
λ centered at (i, j) is the subset

H i,j
λ = {(a, b) ∈ λ : a = i and b ≥ j, or a ≥ i and b = j}.

The length of the hook H i,j
λ is hi,jλ = |H i,j

λ |. We then consider the tableaux that records the hook lengths

inside the Young diagram of λ:

H(i, j) = hi,jλ for (i, j) ∈ λ.

When λ = (4, 2, 1) and n = 5 we get

H =

6 4 2 1

3 1

1

Whit this notation, the Kostka number kλ(n) can be computed via:

kλ(n) =
∏

(i,j)∈λ

T (i, j)

H(i, j)
. (1.7)

When λ = (4, 2, 1) and n = 5 we get k4,2,1(5) = 175.
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1.1. Exercises.

(1) Show that the collection of all the minors of the generic matrix X (of any size from 1 up to m)

can be realized as Plücker coordinates of the extended matrix

Xe =


x11 x12 · · · x1n 0 · · · 0 1

x21 x22 · · · x2n 0 · · · 1 0
...

...
. . .

...
... . .

. ...
...

xm1 xm2 · · · xmn 1 · · · 0 0


(2) Show that the Plücker algebra associated to the generic m × n matrix is isomorphic to that

associated to the generic (n−m)× n matrix.

(3) Consider the generic n× n skew-symmetric matrix

Xskew =



0 p12 p13 · · · p1n

−p12 0 p23 · · · p2n

−p13 −p23 0 · · · p3n
...

...
...

. . .
...

−p1n −p2n −p3n · · · 0


Show that the ideal of relations defining the Plücker algebra for m = 2 is the same as the ideal

generated by the Pfaffians of the principal 4× 4 submatrices of Xskew.

(4) The purpose of this exercise is to verify (1.7) in a few special cases.

(a) Show that if λ1 > n then there are no standard tableaux of shape λ with entries in

{1, · · · , n}. Verify that this agrees with (1.7).

(b) Let ha(n) =
(
a+n−1

a

)
. Prove that for the partition λ = (1a) = (1, · · · , 1) we have

k1a(n) = ha(n)

and check that this agrees with (1.7).

(c) Let ea(n) =
(
n
a

)
. Prove that for the partition λ = (a) we have

ka(n) = ea(n)

and check that this agrees with (1.7).

(d) Prove by induction on n that for a ≥ b we have ka,b(n) = ea(n) · eb(n)− ea+1(n) · eb−1(n).

Use this to prove (1.7) when λ = (a, b).

(e) Prove by induction on n that for a ≥ b we have k2b,1a−b(n) = ha(n)·hb(n)−ha+1(n)·hb−1(n).

Use this to prove (1.7) when λ = (2a−b, 1b).
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(5) Show that in the case when m = 2, the Hilbert function HR(d) of the Plücker algebra is given by

HR(d) =
1

d+ 1
·
(
n+ d− 1

d

)
·
(
n+ d− 2

d

)
.

Verify that in this case dim(R) = 2n− 3 and that the multiplicity/degree of R (with respect to

the maximal homogeneous ideal) is given by the Catalan number

e(R) =
1

n− 1

(
2n− 4

n− 2

)
.

(6) Use formula (1.7) to derive the dimension and the degree of R for arbitrary m,n.

(7) Determine the number of minimal generators of the ideal of Plücker relations for arbitrary m,n.

(8) Prove that for every 1 ≤ k ≤ m one has

[c1, · · · , cm] · [d1, · · · , dm] =
∑

1≤i1<···<im−k≤m
[c1, · · · , ck, di1 , · · · , dim−k

] · [d1, · · · , ck+1, · · · , cm, · · · , dm]

where [d1, · · · , ck+1, · · · , cm, · · · , dm] denotes the tuple obtained from [d1, · · · , dm] by replacing

the elements di1 , · · · , dim−k
with ck+1, · · · , cm (in this order). Pictorially, one has

c1 · · · cm
d1 · · · dm

=
∑

1≤i1<···<im−k≤m

c1 c2 · · · · · · · · · ck di1 · · · · · · · · · dim−k

d1 · · · · · · ck+1 · · · · · · · · · · · · cm · · · dm

Use these relations to give an alternative proof of the fact that any tableau is a linear combination

of standard tableaux.

2. Algebras with straightening law

Suppose that A is a ring and that H ⊂ A is a finite subset which is partially ordered (H is a poset).

A standard monomial is a product of a totally ordered set of elements of H:

α1 · · ·αk where α1 ≤ α2 ≤ · · · ≤ αk.

Assume now that A is a K-algebra for some ring K and that the elements of H generate A as a K-algebra.

We say that A is an algebra with straightening law (on H, over K) if it satisfies the following axioms:

(ASL-1) The algebra A is a free K-module with basis given by the set of standard monomials.

(ASL-2) If α, β ∈ H are incomparable and if

α · β =
∑
i

ci · (γi1 · γi2 · · · ) (2.1)
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is the unique expression of α · β as a linear combination of standard monomials (here ci 6= 0 and

γi1 ≤ γi2 ≤ · · · ) then γi1 < α, β for all i.

The relations in (ASL-2) are called the straightening relations of the algebra A.

Example 2.1 (Polynomial rings). If H is a totally ordered set (for short a chain) then A is necessarily

a polynomial ring K[H] on the elements of H.

Example 2.2 (The discrete ASL). If α · β = 0 for every pair of incomparable elements α, β ∈ H then A

is called the discrete ASL on H. As a consequence of Theorem 2.9 below, a discrete ASL is isomorphic

to the quotient of a polynomial ring by an ideal generated by square-free monomials of degree two. In

Exercise 1 you will show that in fact every quotient of a polynomial ring by a square-free monomial ideals

has the structure of an ASL.

Example 2.3 (2×2 matrices). Consider the polynomial ring S = κ[x11, x12, x21, x22], let ∆ = x11 ·x22−
x12 · x21 denote the determinant of the generic 2× 2 matrix, let H = {x11, , x12, x21, x22,∆} and consider

the partial order on H defined by the following Hasse diagram (with the convention that smaller elements

are at the bottom)

x22

x12 x21

x11

∆

The only incomparable pair of elements is x12, x21 and the straightening relation is

x12 · x21 = x11 · x22 −∆.

Example 2.4 (The Plücker algebra). Let 1 ≤ m ≤ n, let R be the Plücker algebra defined in Section 1

and consider H = {[c1, · · · , cm] : c ∈
(
[n]
m

)
} ⊂ R with the partial order induced by (1.6). Because of the

identification between H and
(
[n]
m

)
, we will also refer to H as the Plücker poset. The standard monomials

correspond precisely to the standard tableaux in Section 1, while the straightening relations in (ASL-2)

come from the Plücker relations as follows. You first need to check:
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Lemma 2.5. Suppose that [c1, · · · , cm], [d1, · · · , dm] are elements of the Plücker poset, and that for some

k ∈ {0, · · · ,m− 1} we have ci ≤ di for all i = 1, · · · , k, and ck+1 > dk+1. Show that (1.2) allows one to

write

[c1, · · · , cm] · [d1, · · · , dm] =
∑
±[e1, · · · , em] · [f1, · · · , fm]

where each term satisfies

[e1, · · · , em] ≤ [c1, · · · , cm] and ei ≤ fi for i = 1, · · · , k + 1.

Iterating this we obtain

[c1, · · · , cm] · [d1, · · · , dm] =
∑
ce,f

ce,f · [e1, · · · , em] · [f1, · · · , fm] (2.2)

where ce,f ∈ κ, [e1, · · · , em] ≤ [f1, · · · , fm] and [e1, · · · , em] ≤ [c1, · · · , cm]

Corollary 2.6. The Plücker algebra R is an ASL on the Plücker poset.

Proof. We already know by Theorem 1.5 that the standard monomials form a basis of R, so condition

(ASL-1) is satisfied. To check (ASL-2) we apply Lemma 2.5: observe that in the relation (2.2) all the

monomials [e1, · · · , em] · [f1, · · · , fm] are standard, so (2.2) is the unique representation of [c1, · · · , cm] ·
[d1, · · · , dm] as a linear combination of standard monomials.

We can now reverse the roles of [c1, · · · , cm] and [d1, · · · , dm] and apply Lemma 2.5 to express

[d1, · · · , dm] · [c1, · · · , cm] =
∑
c′e,f 6=0

c′e,f · [e1, · · · , em] · [f1, · · · , fm]

where ce,f ∈ κ, [e1, · · · , em] ≤ [f1, · · · , fm] and [e1, · · · , em] ≤ [d1, · · · , dm]. Since [d1, · · · , dm]·[c1, · · · , cm] =

[c1, · · · , cm]·[d1, · · · , dm] we conclude that the above expression is identical to (2.2), in particular ce,f = c′e,f
and most importantly

[e1, · · · , em] ≤ [c1, · · · , cm], [d1, · · · , dm] for all terms with ce,f 6= 0

This shows that condition (ASL-2) is satisfied for the Plücker algebra, which concludes our proof. �

2.1. Graded families of ideals and associated graded rings. Consider a descending family of ideals

I• in a ring A:

I• : A = I0 ⊇ I1 ⊇ I2 ⊇ · · ·

We say that I• is a multiplicative family of ideals if

Ip · Iq ⊆ Ip+q for all p, q ≥ 0.
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We will assume throughout that ⋂
j≥0

Ij = 0. (2.3)

Given a multiplicative family of ideals I• we consider the associated graded ring

grI•(A) = gr(A) =
⊕
j≥0

Ij/Ij+1 = A/I1 ⊕ I1/I2 ⊕ · · ·

where the multiplication is induced by that of A. Given an element a ∈ A we define the initial term

in(a) ∈ gr(A) as follows:

• in(a) = 0 if a ∈ Ij for all j, which by virtue of (2.3) is equivalent to a = 0; or else

• consider the maximum j such that a ∈ Ij and let in(a) = a ∈ Ij/Ij+1.

The association a 7→ in(a) is in general not a ring homomorphism, but it satisfies the property that for

every a, b ∈ A we either have that in(a) · in(b) = in(ab) or in(a) · in(b) = 0. In Exercise 4 you will show

that if gr(A) is a domain (resp. reduced) then the ring A is also a domain (resp. reduced). In general

the philosophy is that gr(A) is more poorly behaved than A so whenever we can say that gr(A) has nice

properties then they must be already present in A.

An alternative construction of gr(A) proceeds as follows. Consider an auxiliary variable t and define

the Rees algebra associated to I• as a subalgebra of the Laurent polynomial ring A[t, t−1] via

R(I•) = R = · · · ⊕Atk ⊕ · · · ⊕At⊕A⊕ I1t−1 ⊕ · · · ⊕ Ikt−k ⊕ · · ·

In Exercise 5 you will verify that gr(A) is isomorphic to the quotient R/(t).
Assume now that A is an ASL on a poset H over a ring K and consider a multiplicative family of

ideals I•. We define the order of a standard monomial with respect to the family I• as follows.

• If α ∈ H then we let

ordI•(α) = max{j : α ∈ Ij}.

• If α1 · · ·αk is a standard monomial then we let

ordI•(α1 · · ·αk) =
k∑
i=1

ordI•(αi).

We say that the filtration I• is standard if for each j ≥ 0 the ideal Ij is spanned (over K) by the standard

monomials of order ≥ j.
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Theorem 2.7. If A is an ASL on H over K and if I• is a standard multiplicative family of ideals then

the associated Rees algebra R is an ASL on H over K[t], where we think of H as a subset in R via the

inclusion given by

α 7→ α̃ = t− ord(α) · α.

Moreover, the associated graded ring gr(A) is an ASL on H over K, where we think of H as a subset in

gr(A) via the inclusion given by

α 7→ α = in(α).

Proof. We will prove that R is an ASL on H over K[t], which implies by base change (see Exercise 6)

that

gr(A)
Exercise 5

= R/tR = R⊗K[t] K[t]/tK[t]

is an ASL on H over K[t]/tK[t] = K. The natural quotient map R −→ R/tR sends α̃ −→ α, so the

poset defining the ASL structure on gr(A) will consist of {α : α ∈ H}, as desired.

To check the ASL axioms for R we begin with (ASL-1). We first note that since A is a free K-module

with basis consisting of the standard monomials it follows that A[t, t−1] is a free K[t, t−1]-module on the

same basis. Rescaling each basis elements by a unit (for instance by a negative power of t) will also result

in a K[t, t−1]-basis of A[t, t−1], hence

α̃1 · · · α̃k where α1 ≤ · · · ≤ αk, αi ∈ H, (2.4)

form a K[t, t−1]-basis of A[t, t−1]. Since they are linearly independent over K[t, t−1] it follows that they

must also be linearly independent over K[t]. To finish the proof of (ASL-1) we have to check that the

standard monomials (2.4) span R as a K[t]-module.

Consider first f ∈ Atk for k ≥ 0 and write f = a · tk with a ∈ A. Since a is a K-linear combination of

standard monomials in A we get

a =
∑

ci · (α1 · α2 · · · ), with α1 ≤ α2 ≤ · · ·

This means that

f = a · tk =
∑

ci · tk+ord(α1)+ord(α2)+··· · (α̃1 · α̃2 · · · )

is a K[t]-linear combination of the standard monomials (2.4).

Consider now f ∈ Ikt−k for k ≥ 0. Since I• is a standard family, we can write f = at−k where a is a

linear combination of standard monomials of order >= k. It follows that in the expression

f = a · t−k =
∑

ci · (α̃1 · α̃2 · · · ) · t−k+ord(α1)+ord(α2)+···
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all the exponents −k + ord(α1) + ord(α2) + · · · are non-negative, and therefore f is again a K[t]-linear

combination of the standard monomials (2.4). This concludes the proof of (ASL-1).

You will verify (ASL-2) in Exercise 7. �

Using the observation that A is often better than gr(A), we will apply Theorem 2.7 to deduce good

properties of A from similar properties of gr(A). In fact as we will see shortly it is possible to iterate the

construction A −→ gr(A) by choosing at each step appropriate multiplicative families of ideals, in such

a way that at the very last step we obtain a discrete ASL (Example 2.2). Since discrete ASLs are easier

to understand, the hope is that this would shed some light on the algebra A that we started with.

To measure the failure of an ASL of being discrete, we introduce a new invariant. For A an ASL we

define its indiscrete set Ind(A) ⊆ H to be the set of all elements γ ∈ H that appear on the right hand

side of some straightening relation in (2.1). The indiscreteness of A is the size ind(A) = | Ind(A)| of its

indiscrete set. Note that A is a discrete ASL if and only if ind(A) = 0.

Theorem 2.8. Let α be a minimal element of Ind(A) and consider the multiplicative family of ideals

I• with In = (αn). We have that I• is a standard family, and that (after the identification α ←→ α for

α ∈ H) we have

Ind(gr(A)) ( Ind(A).

Proof. Notice that I• is a multiplicative family, so for the first assertion we need to check that it is

standard. Since A is spanned by standard monomials, In = (αn) is spanned by products αn ·M where M

is a standard monomial. Notice that if β ∈ H is such that α, β are incomparable then α ·β = 0: otherwise

the right hand side of (2.1) would be non-empty so we could find an element γi1 ∈ Ind(A) with γi1 < α, β,

which would contradict the minimality assumption on α. It follows that αn ·M = 0 if M contains factors

β incomparable to α. Since αn ·M is standard whenever all factors β of M are comparable to α, we

conclude that In is spanned by standard monomials.

We now need to verify that Ind(gr(A)) ( Ind(A). Since the ASL structure on gr(A) is induced from

the ASL structure on R by base change, it is clear that Ind(gr(A)) ⊆ Ind(R). By Exercise 7 we get that

Ind(R) ⊆ Ind(A) and therefore

Ind(gr(A)) ⊆ Ind(A).

To prove that the inclusion is strict, we will show that α /∈ Ind(gr(A)). Suppose otherwise, and consider

a straightening relation (we write • for the reduction mod t map R −→ R/tR = gr(A))

β · δ =
∑
i

ci · tmi−ordI• (β)−ordI• (δ) · (γi1 · γi2 · · · )
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where mi = ordI•(γi1)+ordI•(γi2)+· · · and such that α appears as a factor in a non-zero term on the right

hand side. By the minimality of α we must have γi1 = α for some i for which mi = ordI•(β) + ordI•(δ).

Note that if ordI•(β) + ordI•(δ) > 0 then β = α or δ = α, in which case we observed at the beginning of

the proof that β · δ = 0 since β, δ are incomparable. It follows that β · δ = 0, which contradicts the fact

that α appears on the right hand side! We may thus assume that mi = ordI•(β) + ordI•(δ) = 0, but

mi = ordI•(γi1) + ordI•(γi2) + · · · ≥ ordI•(γi1) = ordI•(α) = 1,

which is again a contradiction. This means that α /∈ Ind(gr(A)) which concludes our proof. �

2.2. Two basic properties of ASLs. Recall that an ASL A on H over K is generated as a K-algebra

by the elements of H and that moreover these elements satisfy the straightening relations in (ASL-2).

But there is no a priori reason why there could be no other relations between the elements of H besides

the ones implied by the straightening relations. Nevertheless, we can prove that indeed there aren’t any:

Theorem 2.9. Consider the polynomial ring P = K[Tα : α ∈ H] and the K-algebra homomorphism

π : P � A defined by Tα 7→ α. The ideal ker(π) is generated by the polynomials

Tα · Tβ −
∑
i

ci · (Tγi1Tγi2 · · · ) (2.5)

where α, β run over all pairs of incomparable elements of H and where ci, γij are as in (2.1).

Proof. We consider any total ordering of the variables Tα which is compatible with the partial ordering

on H, i.e. Tα < Tβ for all α, β ∈ H with α < β. This induces a lexicographic ordering of the monomials

in K[Tα] given as follows: first of all we say that a monomial M = Tα1Tα2 · · · is normalized if Tα1 ≤
Tα2 ≤ · · · . For every two normalized monomials

M = Tα1Tα2 · · · and M ′ = Tβ1Tβ2 · · · we say

M < M ′ if and only if for the smallest i for which αi 6= βi we have Tαi < Tβi .

We say that a monomial M = Tα1Tα2 · · · is standard if α1 ≤ α2 ≤ · · · . By (ASL-1) the map Tα −→ α

establishes an isomorphism between the K-span of standard monomials Tα1Tα2 · · · and A, so in order

to prove that ker(π) is generated by (2.5) it is enough to check that every normalized monomial can be

expressed modulo the relations (2.5) as a linear combination of standard monomials. Suppose that this

isn’t the case, and consider the lexicographically minimal (normalized) counterexample M = Tα1Tα2 · · · .
Since M is not standard, we can find i such that αi 6≤ αi+1. We consider the minimal such index i and

observe that αi+1 6≤ αi: otherwise we would get Tαi+1 < Tαi by the choice of the ordering on Tα’s, but
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this would contradict the fact that M was normalized. Modulo the polynomial

Tαi · Tαi+1 −
∑
j

cj · (Tγj1Tγj2 · · · ), with γj1 < αi, αi+1,

we can rewrite M as a linear combination of

Tα1 · · ·Tαi−1Tγj1Tγj2 · · ·

These monomials are not necessarily normalized (we may have to permute the factors to normalize them),

but since γj1 < αi their normalizations are smaller lexicographically than M . Since M was the minimal

counterexample, each such monomial is expressible modulo (2.5) as a linear combination of standard

monomials. The same must then be true about M which gives us a contradiction. �

As a consequence of the discussion from Section 2.1 and the above theorem we obtain the following.

Corollary 2.10. If A is an ASL over a reduced ring K then A is reduced.

Proof. Assume first that A is a discrete ASL. It follows from Theorem 2.9 that

A ' K[Tα : α ∈ H]/(Tα · Tβ : α, β incomparable).

Since incomparable implies distinct, Tα ·Tβ is a square-free monomial for every incomparable α, β, hence

A is a reduced ring by Exercise 1(a).

For the general case we do induction on ind(A). By Theorem 2.8 we can find a multiplicative family

of ideals I• such that gr(A) is an ASL on the same poset H over the same ring K, and in addition

ind(gr(A)) < ind(A). By induction we have that gr(A) is reduced, thus by Exercise 4 we conclude that

A is also reduced. �

2.3. Exercises.

(1) (a) Verify that if K is a reduced ring and if I ⊂ K[z1, · · · , zn] is an ideal generated by square-free

monomials then K[z1, · · · , zn]/I is a reduced ring.

(b) Show that if I ⊂ K[z1, · · · , zn] is an ideal generated by square-free monomials then the

quotient ring A = K[z1, · · · , zn]/I can be given the structure of an ASL over K.

(2) Verify carefully that Example 2.3 gives rise to an ASL.

(3) Prove Lemma 2.5.

(4) Show that if a, b ∈ A then in the associated graded ring gr(A) we either have that in(a) · in(b) =

in(ab) or in(a) · in(b) = 0. Recalling the assumption (2.3) conclude that

• If in(a) is a non-zero divisor in gr(A) then a is a non-zero divisor in A. If gr(A) is a domain

then A is also a domain.
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• If a is nilpotent in A then in(a) is nilpotent in gr(A). If gr(A) is reduced then A is also

reduced.

(5) Check that we have isomorphisms R/(t) ' gr(A) and R/(t− 1) ' A.

(6) Check that if A is an ASL on a poset H over a ring K and if L is a K-algebra then A⊗K L is an

ASL on H ⊗ 1 over L, where the poset structure on H ⊗ 1 is that induced from the identification

with H.

(7) Finish the proof of Theorem 2.7 by verifying condition (ASL-2) for the Rees algebra R. More

precisely, show that if α̃, β̃ are incomparable then (with the notation of (2.1)) if we let

mi = ordI•(γi1 · γi2 · · · )

then mi ≥ ordI•(α) + ordI•(β) for all i and

α̃ · β̃ =
∑
i

ci · tmi−ordI• (α)−ordI• (β) · (γ̃i1 · γ̃i2 · · · )

(8) Prove the following strengthening of the straightening relations (ASL-2). If M = α1α2 · · ·αk is a

non-standard monomial in A and if

M =
∑
i

ci · (γi1 · γi2 · · · )

is the expression of M as a linear combination of standard monomials, then γi1 ≤ αj for all i, j.

3. The Cohen–Macaulay property for graded ASLs

A (positively) graded ring is a ring R together with a decomposition

R =
⊕
i≥0

Ri, such that Ri ·Rj ⊂ Ri+j for all i, j ≥ 0.

A graded R-module is a module M with a decomposition M =
⊕

i∈ZMi such that Ri ·Mj ⊆ Mi+j for

all i, j ≥ 0. If R0 = κ is a field then R has a unique maximal homogeneous ideal m =
⊕

i>0Ri: it follows

from Exercise 3 that in order to prove that R is Cohen-Macaulay it is enough to check that Rm is.

Suppose from now on that R0 = κ is a field, and let d = dim(R) = dim(Rm). A homogeneous

system of parameters is a collection of homogeneous elements x1, · · · , xd with the property that the

ideal (x1, · · · , xd) is m-primary, or equivalently satisfying

dim(R/(x1, · · · , xd)) = 0.

If x1, · · · , xd form a homogeneous system of parameters then R is a finite k[x1, · · · , xd]-module (by the

graded Nakayama Lemma), and therefore x1, · · · , xd are algebraically independent. Conversely, if R is
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finite over a subring k[x1, · · · , xd] generated by homogeneous elements x1, · · · , xd then these elements

form a homogeneous system of parameters and in particular they are algebraically independent. We have

the equivalence

R is CM ⇐⇒ x1, · · · , xd form a regular sequence on R⇐⇒ R is a free κ[x1, · · · , xd]-module.

Throughout this section we will assume that A is a graded ASL over a field κ: this means that in

addition to (ASL-1) and (ASL-2) the ring A satisfies

(ASL-0) The ring A is graded, A =
⊕

i≥0Ai, with A0 = κ, and the elements of H are homogeneous of

positive degree.

Given an element α ∈ H we define its rank to be the length of a maximal descending chain in H

starting at α: rank(α) = k if and only if there exists α = αk > · · · > α1, αi ∈ H, and k is maximal with

this property. For a subset U ⊂ H we define

rank(U) = max{rank(α) : α ∈ U}.

In particular for the poset H in Example 2.3 we have rank(x11) = 2 and rank(H) = 4.

Proposition 3.1. Let A be a graded ASL on H over a field κ and let m = (H) denote the maximal

homogeneous ideal (which is generated by the elements of H). We have that

dim(A) = height(m) = rank(H).

Moreover, a homogeneous system of parameters can be constructed as follows. We let mi denote the least

common multiple of the degrees deg(α) of elements α ∈ H with rank(α) = i, and write e(α) = mi/ deg(α)

if rank(α) = i. The elements

xi =
∑

α∈H, rank(α)=i

αe(α), i = 1, · · · , r,

form a homogeneous system of parameters for A.

Proof. The equality dim(A) = height(m) follows from the fact that A0 = κ is a field and m is the maximal

homogeneous ideal in A. Since A is a finitely generated κ-algebra, to prove that dim(A) ≥ rank(H) it

suffices to find a polynomial subring P ⊆ A of dimension r = rank(H). Consider a chain α1 < · · · < αr

in H, which exists by the definition of r = rank(H). Note that the monomials αi11 · · ·αirr (i1, · · · , ir ≥ 0)

are standard, hence by (ASL-1) they are linearly independent over κ. This means that P = κ[α1, · · · , αr]
is a polynomial ring of dimension r contained in A.
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Since deg(αe(α)) = mi if rank(α) = i, it is clear that the elements xi are homogeneous. We prove by

induction that they form a system of parameters. We let H1 ⊂ H denote the set of minimal elements in

H (elements of rank 1), and let H = H \H1 with its induced poset structure. We also consider the ideal

I1 = (H1) generated by the minimal elements. It is clear that rank(H) = rank(H) − 1, and it follows

from Exericise 5 that A = A/I1 is an ASL on H over κ (and it is clearly graded). By induction, the

elements x2, · · · , xr form a system of parameters for A, so I1 + (x2, · · · , xr) is m-primary. To finish the

induction we need to check that a sufficiently large power of every α ∈ H1 belongs to (x1, x2, · · · , xr).
Consider then any α ∈ H1 and note that for every α 6= β ∈ H1 we have that α, β are incomparable,

hence by (ASL-2) we obtain α · β = 0. This implies that

αe(α)+1 = αe(α)+1 +
∑

α6=β∈H1

α · βe(β) = α · x1 ∈ (x1, x2, · · · , xr)

which is what we wanted to prove. �

Corollary 3.2. The Plücker algebra has dimension m · (n−m) + 1.

Proof. Any maximal chain in the Plücker poset has the form

[1, 2, · · · ,m] < [1, 2, · · · ,m+ 1] < · · · < [n−m+ 1, · · · , n]

where two consecutive terms [c1, · · · , cm] < [d1, · · · , dm] differ in precisely one component i, and for that

component di = ci + 1. It is then clear (see also Exercise 4) that the sum of the entries goes up by one

at each step, so the length of such a chain is

((n−m+ 1) + (n−m+ 2) + · · ·+ n)− (1 + 2 + · · ·+m) + 1 = m · (n−m) + 1. �

We will give a combinatorial condition on the poset H which will guarantee the Cohen-Macaulayness

of A, irrespective of the straightening relations! To do this, we need some definitions. An element β ∈ H
is a cover of α ∈ H if β > α and if there is no element γ lying strictly between α and β (i.e. satisfying

β > γ > α).

The poset H is said to be wonderful if the following holds after a smallest and a greatest element −∞
and ∞ have been added to H: if α ∈ H ∪{−∞}, γ ∈ H ∪{∞}, and β1, β2 ∈ H are covers of α satisfying

β1, β2 < γ then there exists an element β ∈ H∪{∞} with β ≤ γ which covers both β1 and β2. Pictorially,
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we have

γ

β

β1 β2

α

where filled lines correspond to covering relations, and dotted lines to pairs of ordered (not necessarily

covering) elements. An example of a poset which is not wonderful is given by the following Hasse diagram:

•

•

•

•

•

Equipped with the notion of a wonderful poset we will prove the following.

Theorem 3.3. A graded graded ASL on a wonderful poset H over a field κ is Cohen-Macaulay.

The proof of Theorem 3.3 will be an inductive argument based on a number of preliminary results

which we establish next. We begin with a definition. If H is a poset then we define a poset ideal J in

H to be a subset J ⊆ H with the property that for every α ∈ J and every β ≤ α we have β ∈ J . An
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example of a wonderful poset H and an ideal J ⊂ H is given by

H =

•

• α2

α1 • •

• •

•

⊃ J =
• •

• •

•

(3.1)

(we singled out the elements α1, α2 for later use). Note that the subposet H \ J is not wonderful:

H \ J =

•

• α2

α1

However, we have the following criterion:

Lemma 3.4. Suppose that J ⊂ H is a poset ideal, and that for every minimal elements β1, β2 ∈ H \ J
and every γ ∈ (H \J)∪{∞} with β1, β2 < γ there exists an element β ∈ (H \J)∪{∞} with β ≤ γ which

covers both β1, β2. If H is wonderful then H \ J is wonderful.

Proof. Consider two elements β1, β2 ∈ H \ J which cover an element α ∈ (H \ J) ∪ {−∞}, and assume

that γ ∈ (H \J)∪{∞} satisfies γ > β1, β2. We have to verify that there exists β ∈ (H \J)∪{∞}, β ≤ γ,

which is a cover of both β1, β2.

If α = −∞ then β1, β2 have to be minimal elements of H by the definition of cover. The existence of β

then follows from the hypothesis. We may then assume that α ∈ H \ J . Since the poset H is wonderful,

there exists β ∈ H ∪ {∞}, β ≤ γ, which is a cover of both β1, β2. If β ∈ J then β ≥ β1 ≥ α, and since J

is a poset ideal it follows that α ∈ J , a contradiction. This means that β ∈ (H \J)∪{∞}, as desired. �

Given a subset A ⊂ H, the poset ideal cogenerated by A is defined to be the subset J ⊂ H consisting

of elements β with β 6≥ α for all α ∈ A (check that this is indeed a poset ideal). Equivalently, H \J is the

subposet of H consisting of elements β with β ≥ α for some α ∈ A. In (3.1) the ideal J is cogenerated
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by {α1, α2} and we saw that H \ J is not wonderful. One can show by contrast that if J is a poset ideal

cogenerated by a single element the H \J is wonderful (see Exercise 7). Also, when A consists of minimal

elements we have the following.

Corollary 3.5. If J ⊂ H is the ideal cogenerated by a set of minimal elements α1, · · · , αt ∈ H and if H

is wonderful then H \ J is wonderful.

Proof. We will verify that J satisfies the hypothesis of Lemma 3.4, and for that we note that the minimal

elements of H \ J are precisely α1, · · · , αt. Suppose that γ ∈ (H \ J) ∪ {∞} is such that γ > αi, αj for

some i 6= j. Since H is wonderful, we can find β ∈ H ∪ {∞}, β ≤ γ, such that β covers αi, αj . Since J is

cogenerated by α1, · · · , αt, it follows that β ∈ (H \ J) ∪ {∞}, so Lemma 3.4 applies. �

We will also need the following commutative algebra fact.

Lemma 3.6. Write r = dim(A). Assume that I, I ′ ⊂ A are homogeneous ideals with I ∩ I ′ = 0,

that dim(A/I) = dim(A/I ′) = r and that dim(A/(I + I ′)) = r − 1. If A/I,A/I ′ and A/(I + I ′) are

Cohen-Macaulay then A is also Cohen-Macaulay.

Proof. We have an exact sequence

0 −→ A/(I ∩ I ′) −→ A/I ⊕A/I ′ −→ A/(I + I ′) −→ 0

and A/(I∩I ′) = A by the hypothesis. Since A/I,A/I ′ are Cohen-Macaulay of dimension r, depth(A/I) =

depth(A/I ′) = r. Since A/(I + I ′) is Cohen-Macaulay of dimension r− 1, depth(A/(I + I ′)) = r− 1. By

the depth lemma (in Ryo’s lectures) we conclude that depth(A) ≥ r, i.e. A is Cohen-Macaulay. �

Proof of Theorem 3.3. We do induction on |H|, and write r = rank(H) = dim(A) by Proposition 3.1. If

H contains a unique minimal element α, then α is a non-zero divisor on A and the poset H = H \ {α} is

wonderful with rank(H) = r − 1 (see Exercise 6). By Exercise 5, A = A/(α) is an ASL on H. It follows

by induction that A is Cohen-Macaulay, and by Proposition 3.1 that dim(A) = r − 1. This is enough to

conclude that A is Cohen-Macaulay.

Assume now that H has at least two minimal elements, namely α1, · · · , αt, t ≥ 2. We will prove that

A is Cohen-Macaulay by applying Lemma 3.6. Let J ⊂ H be the poset ideal cogenerated by α1, and let

J ′ ⊂ H be the poset ideal cogenerated by α2, · · · , αt. Let I ⊂ A be the ideal generated by J , and I ′ ⊂ A
the ideal generated by J ′. By Exercise 5, A/I is an ASL on H \ J , and A/I ′ is an ASL on H \ J ′. By

Corollary 3.5, H \ J and H \ J ′ are wonderful, thus A/I and A/I ′ are Cohen-Macaulay by induction.

To show that dim(A/I) = dim(A/I ′) = r it suffices to show that H \ J and H \ J ′ contain chains of

length r. Consider a maximal chain in H containing α1: by Exercise 7 this chain has length r, and since
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J is cogenerated by α1 this chain is contained in H \ J , so rank(H \ J) = r. Replacing α1 with α2 and

repeating the argument we get rank(H \ J ′) = r.

Using Exercise 5, the intersection I ∩ I ′ is spanned by standard monomials M = γ1 · γ2 · · · which

contain a factor β ∈ J and a factor β′ ∈ J ′, i.e. β 6≥ α1 and β′ 6≥ αi for i = 2, · · · , t. Since γ1 ∈ H we get

γ1 ≥ αj for some j. Since the monomial M is standard we get γ1 ≤ β, β′. This shows that αj ≤ β, β′,

which is impossible, so I ∩ I ′ = 0.

To finish the proof we have to show that A/(I+ I ′) is Cohen-Macaulay of dimension r−1. Since I+ I ′

is the ideal generated by J ∪ J ′, it suffices to show that H \ (J ∪ J ′) is a wonderful poset of rank r − 1.

We first verify that the rank is r − 1. Note that H \ (J ∪ J ′) = (H \ J) ∩ (H \ J ′) consists of elements

β with β ≥ α1 and β ≥ αi for some i > 1. It follows that H \ (J ∪ J ′) contains no minimal elements

of H, so rank(H \ (J ∪ J ′)) ≤ r − 1. Moreover, since α1, α2 cover −∞ and since H is wonderful we can

find β ∈ H which covers both α1, α2. Consider a maximal chain α1 < β < γ1 < · · · < γr−2 in H (using

Exercise 7), and note that since γi > β > α1, α2 we have β, γi ∈ H \ (J ∪ J ′), i.e. β < γ1 < · · · < γr−2 is

a chain of length r − 1 in H \ (J ∪ J ′) and therefore rank(H \ (J ∪ J ′)) = r − 1.

Finally, we show that H \ (J ∪ J ′) is wonderful, for which we apply Lemma 3.4. To do that we first

show that if β is minimal in H \ (J ∪ J ′) then β covers α1. We know that β ≥ α1 and β ≥ αi for some

i > 1, and α1, αi cover −∞ since they are minimal elements of H. Since H is wonderful, we can find

β′ ∈ H with β′ ≤ β such that β′ covers α1, αi, so in particular β′ ∈ H \ (J ∪ J ′). But since β is minimal

in H \ (J ∪ J ′) we must have β′ = β and thus β covers α1. To check the hypothesis of Lemma 3.4 we

consider minimal elements β1, β2 ∈ H \ (J ∪J ′), and an element γ ∈ (H \ (J ∪J ′))∪{∞} with γ > β1, β2.

Since β1, β2 cover α1 and H is wonderful, there exists β ∈ H ∪{∞} with β ≤ γ which covers both β1, β2.

This implies that β ≥ α1 and β ≥ αi for some i > 1, so β ∈ (H \ (J ∪ J ′))∪{∞} and Lemma 3.4 applies,

concluding our proof. �

The condition that H is wonderful is by no means necessary for the Cohen-Macaulayness of an ASL

on H. For instance, [HW85, Fig. 4] gives a poset H which is not wonderful, but for which there exists a

Gorenstein graded ASL domain on H:

• • • •

• • • •

•

The following question is unresolved.
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Open Question 3.7 (Watanabe). If A is a graded ASL domain over a field of characteristic zero, is it

true that A is Cohen-Macaulay?

When dim(A) = 3 this question has an affirmative answer, as explained in [HW85, Section 2].

3.1. Exercises.

(1) Suppose that A is a graded ASL over a field κ. Show that if dim(A) = 1 then

A ' κ[x1, · · · , xn]/(xi · xj : i 6= j).

(2) Suppose that A,A′ are graded ASLs on the posets H,H ′ over a field κ, and consider the Segre

product

A#A′ =
⊕
i≥0

Ai ⊗κ A′i.

Show that A#A′ is a graded ASL on the product poset H ×H ′ (where the order is defined by

(α, α′) ≤ (β, β′) if and only if α ≤ α′ and β ≤ β′).
(3) Let R be a Noetherian graded ring and let M be a finitely generated graded R-module. Given

an arbitrary ideal I ⊂ R we define a corresponding graded module I∗ to be the ideal generated

by all homogeneous elements a ∈ I. Show that

(a) For p ∈ Spec(R) the localization Mp is Cohen-Macaulay if and only if Mp∗ is.

(b) M is Cohen-Macaulay if and only if Mp is for all graded prime ideals p.

(c) Suppose that R0 = κ is a field and let m =
⊕

i>0Ri denote the maximal homogeneous ideal.

Show that M is Cohen-Macaulay if and only if Mm is.

(4) Show that the Plücker poset in Example 2.4 is wonderful and conclude that the Plücker algebra

is Cohen-Macaulay. Verify that for an element [c1, · · · , cm] in the Plücker poset we have

rank([c1, · · · , cm]) = (c1 − 1) + (c2 − 2) + · · ·+ (cm −m) + 1.

(5) Let A be an ASL on H over K, let J ⊆ H be a poset ideal, and let I(J) ⊂ A denote the ideal

generated by the elements of J .

(a) Prove that a standard monomial is contained in I(J) if and only if it contains a factor in J ,

and conclude that I(J) is spanned over K by the standard monomials it contains.

(b) Show that A/I(J) is an ASL on H \ J over K.

(6) Suppose that A is an ASL on a poset H containing a unique minimal element α, and let H =

H \ {α}. Show that rank(H) = rank(H) − 1 and that α is a non-zero divisor on A. Show also

that if H is wonderful then H is wonderful.
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(7) Suppose that H is a wonderful poset.

(a) Show that if J is a poset ideal cogenerated by a single element α ∈ H then H \J is wonderful.

(b) Show that the length of any maximal chain in H is equal to rank(H).

(8) Consider the following variation of the Plücker poset. Fix 1 ≤ m ≤ n and let

H = {(i1, · · · , ir|j1, · · · , jr) : 1 ≤ r ≤ m, 1 ≤ i1 < i2 < · · · < ir ≤ m, 1 ≤ j1 < j2 < · · · < jr ≤ n}

with the partial order defined by

(i1, · · · , ir|j1, · · · , jr) ≤ (i′1, · · · , i′s|j′1, · · · , j′s) if and only if

r ≥ s and ik ≤ i′k, jk ≤ j′k for k = 1, · · · , s.

Show that:

(a) When m = n = 2, H is the poset from Example 2.3.

(b) For any m ≤ n the poset H is wonderful.

(c) Fix 1 ≤ r ≤ m and consider the subset Jr ⊂ H consisting of all elements (i1, · · · , is|j1, · · · , js)
with s ≥ r. Show that Jr is a poset ideal cogenerated by a single element of H and conclude

that H \ Jr is a wonderful poset.

4. Determinantal rings

In this section we consider the polynomial ring A = κ[xij ] on the entries of the generic m×n matrix X.

The goal is to put on A the structure of a graded ASL over κ which will help us study questions about

determinantal ideals (of course there is an easy ASL structure given in Example 2.1, but that will not be

helpful for us). Given 1 ≤ a1, · · · , ar ≤ m and 1 ≤ b1, · · · , br ≤ n we consider the corresponding r × r
minor

[a1, · · · , ar|b1, · · · , br] = det(xaibj )1≤i,j≤r,

and note that just as in the case of Plücker coordinates the formation of this minor is skew-symmetric in

ai’s (resp. bj ’s), and is zero when repetitions occur among the ai’s (resp. bj ’s). We define H to be the

poset of all minors [a1, · · · , ar|b1, · · · , br] with a1 < · · · < ar, b1 < · · · < br, with the order defined (as in

Exercise 8 of Section 3) by

[a1, · · · , ar|b1, · · · , br] ≤ [a′1, · · · , a′s|b′1, · · · , b′s] if and only if

r ≥ s and ak ≤ a′k, bk ≤ b′k for k = 1, · · · , s.

The main result of this section is the following.

Theorem 4.1. The polynomial ring A is a graded ASL on H over κ.
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As a consequence, we draw similar conclusions about the determinantal rings obtained as quotients of

A by determinantal ideals. For t = 1, · · · ,m we will denote by It the ideal generated by the t× t minors

of X. If we define the poset ideals Jt ⊂ H as in Exercise 8 from Section 3 then we obtain the following.

Corollary 4.2. For every t = 1, · · · ,m the quotient ring A/It is a graded ASL on H \ Jt over κ, and it

is Cohen-Macaulay of dimension (t− 1) · (m+ n− t+ 1).

Proof. We have that It is the ideal of A generated by the elements of Jt, thus by Exercise 5 in Section 3

we get that A/It is an ASL on H \Jt over κ (and is clearly graded). By Exercise 8 in Section 3, the poset

H \ Jt is wonderful, hence A/It is Cohen-Macaulay. You will verify the assertion about the dimension of

A/It in Exercise 8. �

To prove Theorem 4.1, we relate A to the Plücker algebra of a (slightly larger) generic matrix. We let

X̃ denote the m× (n+m) generic matrix

X̃ =


x11 x12 · · · x1n x1,n+1 · · · x1,n+m−1 x1,n+m

x21 x22 · · · x2n x2,n+1 · · · x2,n+m−1 x2,n+m
...

...
. . .

...
... . .

. ...
...

xm1 xm2 · · · xmn xm,n+1 · · · xm,n+m−1 xm,n+m


and let R̃ denote the Plücker algebra generated by the maximal minors of X̃. We let H̃ denote the

corresponding Plücker poset, and note that H̃ has a unique maximal element, namely [n+ 1, · · · , n+m].

We consider the extended matrix

Xe =


x11 x12 · · · x1n 0 · · · 0 1

x21 x22 · · · x2n 0 · · · 1 0
...

...
. . .

...
... . .

. ...
...

xm1 xm2 · · · xmn 1 · · · 0 0


and note that the natural specialization map X̃ −→ Xe induces a ring homomorphism

φ : R̃ −→ A

which is surjective by Exercise 1 in Section 1.

Lemma 4.3. Given 1 ≤ t ≤ m, 1 ≤ a1 < · · · < at ≤ m and 1 ≤ b1 < · · · < bt ≤ n we define a sequence

n+ 1 ≤ bt+1 < · · · < bm ≤ m+ n by the equality

{a1, · · · , at,m+ n+ 1− bm, · · · ,m+ n+ 1− bt+1} = {1, · · · ,m}. (4.1)
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We have that

[a1, · · · , at|b1, · · · , bt] = ±φ([b1, · · · , bm])

and the association

[a1, · · · , at|b1, · · · , bt] −→ [b1, · · · , bm] (4.2)

establishes an isomorphism of posets between H and H̃ \ {[n+ 1, · · · , n+m]}.

Example 4.4. Consider the case when m = 3 and n = 4. Equation (4.2) gives a correspondence

[1, 2, 3|1, 2, 3]←→ [1, 2, 3], [2, 3|2, 4]←→ [2, 4, 7], [3|2]←→ [2, 6, 7].

We have

[1, 2, 3|1, 2, 3] ≤ [2, 3|2, 4] ≤ [3|2] in H and [1, 2, 3] ≤ [2, 4, 7] ≤ [2, 6, 7] in H̃.

It is more convenient to define i = m+ n+ 1− i for i = 1, · · · ,m, so that the columns of X̃ are labeled

1, 2, · · · , n,m,m− 1, · · · , 1. The Plücker coordinate [c1, · · · , ct, d1, · · · , dm−t] then corresponds to the

t × t minor of X determined by the columns c1, · · · , ct and the rows different from d1, · · · , dm−t. The

correspondence between minors and Plücker coordinates in the example above is then given by

[1, 2, 3|1, 2, 3]←→ [1, 2, 3], [2, 3|2, 4]←→ [2, 4, 1], [3|2]←→ [2, 2, 1].

Proof of Lemma 4.3. It is easy to see that (4.2) gives a bijection between H and H̃ \{[n+1, · · · , n+m]}:
to define the inverse of (4.2), for a given [b1, · · · , bm] ∈ H̃ \ {[n + 1, · · · , n + m]} we let t be the unique

index for which bt ≤ n, bt+1 ≥ n+ 1 and define a1, · · · , at by (4.1). We then only need to verify that this

bijection identifies the orderings of the two posets. This is the content of Exercise 1. �

Proof of Theorem 4.1. We write

ε = (−1)(
n
2) = det


0 · · · 0 1

0 · · · 1 0
... . .

. ...
...

1 · · · 0 0


and note that φ([n+ 1, · · · , n+m]) = ε, so φ induces a surjective ring homomorphism

φ : R̃/([n+ 1, · · · , n+m]− ε) −→ A.

By Corollary 3.2 we have dim(R̃) = m · n + 1, while dim(A) = m · n since A is a polynomial ring in

m · n variables. By Exercise 2, the quotient R̃/([n+ 1, · · · , n+m]− ε) is an integral domain (necessarily

of dimension smaller than that of R̃), hence φ is in fact an isomorphism.
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By Lemma 4.3, φ maps standard monomials in R̃ to standard monomials in A, so the algebra A is

spanned by standard monomials. Moreover, since [n+ 1, · · · , n+m] is the unique maximal element of H̃

and is mapped to a constant by φ, it is clear that the straightening relations of A are induced by those

of R̃ and (ASL-2) holds for A. To conclude that A is an ASL on H we have to verify that the standard

monomials are linearly independent.

By Lemma 4.3 the map φ induces a bijection between standard monomials in R̃ not containing

[n + 1, · · · , n + m] as a factor, and standard monomials in A. We let Ã ⊂ R denote the span of

standard monomials in R̃ not involving [n+ 1, · · · , n+m]. Since φ is an isomorphism, to prove the linear

independence of standard monomials in A it suffices to check that

Ã ∩ ([n+ 1, · · · , n+m]− ε)R̃ = 0. (4.3)

Suppose that we have a relation∑
ai ·Mi = ([n+ 1, · · · , n+m]− ε) ·

∑
bj ·Nj

=
∑

bj · (Nj · [n+ 1, · · · , n+m])−
∑

(bj · ε) ·Nj

where Mi are standard monomials not involving [n + 1, · · · , n + m], while Nj are arbitrary standard

monomials. Since [n+1, · · · , n+m] is the maximal element of H̃, all the monomials Nj · [n+1, · · · , n+m]

are standard. By assumption, the monomials Mi, Nj are also standard, hence the above relation can only

hold if ai = bj = 0 for all i, j. This shows (4.3) and concludes our proof. �

To obtain a pictorial representation of the elements of H we define a double (or bi)tableau to be a

pair D = [T |T ′] where |T | = |T ′| (recall that this notation means that T and T ′ have the same shape,

i.e. the same underlying Young diagram). The shape |D| of is defined to be the partition |T | = |T ′|. We

say that D is a standard double tableau if both T, T ′ are standard. We represent a product of minors of

X as a double tableau [T, T ′] where the i-th minor in the product is given by

[T (i, 1), T (i, 2), · · · |T ′(i, 1), T ′(i, 2), · · · ]

With these conventions, the standard monomials in A = κ[xij ] correspond precisely to standard double

tableaux. For esthetic reasons, when picturing [T |T ′] as a pair of filled Young diagrams we will draw

instead of T a mirror image of T with respect to a vertical axis: for instance the standard monomial

which is the product of minors from Example 4.4 is represented by the standard double tableau

[T |T ′] =
3 2 1

3 2
3

1 2 3
2 4
3

, where T =
1 2 3
2 3
3

, and T ′ =
1 2 3
2 4
3

.
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Given two partitions λ, µ of the same size, we say that λ dominates µ and write λ ≥ µ if for every i ≥ 1

we have

λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi.

For instance

≥ ≥

Note that the dominance relation is different from the containment relation λ ⊇ µ, which means λi ≥ µi
for all i. It is always the case that if λ ⊇ µ then λ ≥ µ, but the converse fails in general as can be seen

in the example above.

Proposition 4.5. If D is a double tableau of shape λ and if D =
∑
aiDi is the representation of D as

a linear combination of standard double tableaux, then |D| ≤ |Di| for all i.

Proof. Let D be a double tableau, and consider the corresponding tableau T with entries in the set

{1, 2, · · · , n,m, · · · , 1} and constructed via the correspondence (4.1) with the conventions in Example 4.4.

We apply the procedure from Lemma 1.7 to write T as a linear combination of standard tableaux, and

then translate the results back to relations involving double tableaux. It is enough to analyze what

happens for (double) tableaux with two rows.

Suppose that D is a double tableau of shape (λ1, λ2) and consider the corresponding tableau T =

[c1, · · · , cm] · [d1, · · · , dm] with ci, dj ∈ {1, · · · , n,m, · · · , 1}, and (at the expense of possibly changing the

sign) c1 < · · · < cm, d1 < · · · < dm. We write ei = cλ1+i and fj = dλ2+j , so that

T =

c1 · · · · · · · · · · · · cλ1 e1 · · · em−λ1

d1 · · · dλ2 f1 · · · · · · · · · · · · fm−λ2

has entries satisfying c1, · · · , cλ1 , d1, · · · , dλ2 ∈ [n] and e1, · · · , em−λ1 , f1, · · · , fm−λ2 ∈ [m]. To apply the

Plücker relation (1.4) we consider the first index k such that ck ≤ dk and ck+1 > dk+1. Since i < j for

all i ∈ [n] and j ∈ [m], we see that either k < λ2 or k ≥ λ1. In either case, we see that the relation (1.4)

allows us to rewrite T as a linear combination of tableaux Ti such that each Ti has at least λ1 entries

from {1, · · · , n} in its first row, i.e. such that the corresponding double tableau Di has shape µ = (µ1, µ2)

with µ1 ≥ λ1 (and µ1 + µ2 = λ1 + λ2). Since any such µ satisfies µ ≥ λ, the conclusion follows. �
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For a partition λ with λ1 ≤ m we let Aλ ⊂ A denote the span of all double tableaux D of shape

|D| ≥ λ,

Aλ =
∑
|D|≥λ

κ ·D (4.4)

and let Iλ ⊂ A denote the span of all standard double tableaux D of shape |D| ⊇ λ,

Iλ =
∑
|D|⊇λ

κ ·D (4.5)

It follows from Proposition 4.5 that Aλ is an ideal in A, and you will verify in Exercise 5 that Iλ is an

ideal as well. See [DCEP80] for an extensive study of these ideals.

4.1. Exercises.

(1) Verify that the bijection in Lemma 4.3 is an isomorphism of posets.

(2) Let R be a Z-graded ring, let 0 6= f ∈ R1, and let u ∈ R0 be an invertible element (a unit). Show

that the localization Rf is also Z-graded, and that if we write (Rf )0 for the degree 0 part of Rf

then we have an isomorphism

R/(f − u) ' (Rf )0.

In particular, if R is a domain then the same is true about R/(f − u).

(3) Suppose that m = n = 4. Write the double tableau

2 1
4 3

1 4
2 3

as a linear combination of standard double tableaux. Check your work!

(4) (a) Let B be a normal domain, and let G be a subgroup of the group Aut(B) of automorphisms

of B. Show that BG is a normal domain.

(b) Assume that κ is an infinite field. Show that the Plücker algebra is the ring of invariants for

the action of SLm(κ) on the polynomial ring A = κ[xij ] and conclude that it is normal.

(5) Assume that κ is a field of characteristic zero.

(a) If λ is any partition with λ1 ≤ m show that Iλ is an ideal in A = κ[xij ].

(b) Let Z<t denote the set of m× n matrices of rank < t with entries in κ. Show that the ideal

of polynomials f ∈ A vanishing on Z<t is the same as the ideal It generated by the t× t minors

of the generic matrix X = (xij).

(c) Show that
√
Iλ = Iλ1 (using part (b)).
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(6) Assume that κ is a field of characteristic zero. Show that the powers of the ideals It have a basis

consisting of standard double tableaux, and using notation (4.4) that

Idt = A(td), where (td) = (t, t, · · · , t) is the partition with d parts equal to t.

Given a partition λ = (λ1, λ2, · · · ), write #λ = λ1 + λ2 + · · · for the size of λ. Show that

Idt =
∑

#λ=t·d
λ1≤m, λd+1=0

Iλ.

(7) Show that the ideal It can be generated up to radical by m · n− t2 + 1 elements.

(8) Show that dim(A/It) = (t− 1) · (m+ n− t+ 1) in two ways:

(a) By studying the Hilbert function of A/It.

(b) By computing the rank of the poset H \ Jt.
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